• 제목/요약/키워드: boiling point

검색결과 329건 처리시간 0.023초

Characterization of Basic Nitrogen-Containing Compounds in the Products of Lube Base Oil Processing by Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

  • Li, Xiaohui;Zhu, Jianhua;Wu, Bencheng
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권1호
    • /
    • pp.165-172
    • /
    • 2014
  • The distribution of basic nitrogen-containing compounds in three vacuum gas oils (VGOs) with different boiling ranges and their dewaxed oils from the lube base oil refining unit of a refinery were characterized by positive-ion electrospray ionization (ESI) Fourier transform-ion cyclotron resonance mass spectrometry (FT-ICR MS). It turned out that the composition of basic nitrogen compounds in the samples varied significantly in DBE and carbon number, and the dominant basic N-containing compounds in these oil samples were N1 class species. $N_1O_1$, $N_1O_2$, and $N_2$ class species with much lower relative abundance were also identified. The composition of basic nitrogen compounds in VGOs and dewaxed VGOs were correlated with increased boiling point and varied in DBE and carbon numbers. The comparison of the analytical results between VGOs and dewaxed VGOs indicated that more basic N-containing compounds in VGO with low carbon number and small molecular weight tend to be removed by solvent refining in lube base oil processing.

Al 5J32 합금의 레이저 용접에서 레이저출력 모듈레이션을 이용한 이면 험핑 비드의 안정화 (Prevention of Back Side Humping in Laser Welding of Al 5J32 Alloy by Using Laser Power Modulation)

  • 안도창;김철희;김재도
    • Journal of Welding and Joining
    • /
    • 제29권4호
    • /
    • pp.80-84
    • /
    • 2011
  • In the 5xxx series Al-Mg alloy, magnesium addition can increase the strength of aluminum alloy by solid solution strengthening but it has a relatively low melting and boiling temperature. During full -penetration laser welding of the Al-Mg alloys, its low boiling point and high vapor pressure brings about the spiky humping bead on the bottom side. Under back-side shielding, the spiking of back bead can be reduced but it restraints the process flexibility. In this study, a square pulse waveform modulation was employed to stabilize keyhole and back bead surface without back-side shielding. By using an experimental design, the bead shapes were evaluated for various process parameters such as the focal position, welding velocity and waveform parameters and the smooth back bead shape could be achieved.

삼중점과 임계점간 파라수소의 증기압 예측 (Prediction of Vapor Pressure of Parahydrogen from the Triple to the Critical Point)

  • 정재관
    • 대한화학회지
    • /
    • 제45권4호
    • /
    • pp.293-297
    • /
    • 2001
  • 문헌에 보고된 삼중점과 임계점간 기존의 파라수소 증기압 측정값을 이용하여 환원증기압과 환원온도 형태의 아래와 같은 식의 지수와 상수를 구하는데 사용하였다. $lnP_r=2.64-{\frac{2.75}{T_r}}+1.48129lnT_r+0.11T^5_r$ 증기압을 계산하기 위해서 필요한 것은 정상 끓는점($T_b$= 20.268K), 임계압력($P_c$= 1292.81 kPa) 및 임계온도($T_c$= 32.976K)뿐이며 153개 파라수소의 증기압 실험자료에 적용하여 본 결과 전체 평균편차가 0.21% 였다.

  • PDF

LMG 배관시스템의 열유동 해석 및 최적설계 프로그램 개발 (A Computer Programme Development for Thermal-Hydraulic Analysis and Optimal Design on LNG Pipeline System)

  • 이상규;홍성호;이중남;박석호
    • 한국가스학회지
    • /
    • 제4권2호
    • /
    • pp.7-14
    • /
    • 2000
  • 생산지로부터 LNG 선박으로 수송되어 각 생산기지의 저장탱크로 저장되는 액화천연가스 (LNG; Liquified Natural Gas)는 극저은인 Boiling Point보다 약간 낮은 온도 ($-162^{\circ}C$)로 전송된다. LNG 전송은 배관을 통하여 이루어지며, 이로 인하여 배관 내에는 2상 유동 (2-Phase Flow)이 자주 형성된다. 본 연구에서는 일차적으로 이러한 배관내의 2상 유동대한 압력강하량 계산법을 연구하였고, 단열재와 배관 표면을 통한 외부 열유입량과 그에 따른 BOG (Boil-off Gas) 발생량 계산 방법을 연구하여, 이들을 기반으로 LNG 배관시스템의 열유동 해석 프로그램을 개발하였다. 또한 본 연구 및 프로그램 개발을 토대로 최적의 단열재 두께와 배관 Size를 구할 수 있는 최적 설계 프로그램을 구축하였다. 이는 배관설계 시 주어진 최대 허용 압력 강하량과 BOG 발생량 등의 허용 운전 조건과, 단위 길이 당 배관가격과 단위 부피당 단열재가격을 기준으로 허용 범위 내의 최소 설비 비용을 찾는 최적 설계 방법이다.

  • PDF

Investigation on effect of surface properties on droplet impact cooling of cladding surfaces

  • Wang, Zefeng;Qu, Wenhai;Xiong, Jinbiao;Zhong, Mingjun;Yang, Yanhua
    • Nuclear Engineering and Technology
    • /
    • 제52권3호
    • /
    • pp.508-519
    • /
    • 2020
  • During transients or accidents, the reactor core is uncovered, and droplets entrained above the quench front collides with the uncovered fuel rod surface. Droplet impact cooling can reduce the peak cladding temperature. Besides zirconium-based cladding, versatile accidental tolerant fuel (ATF) claddings, including FeCrAl, have been proposed to increase the accident coping time. In order to investigate the effect of surface properties on droplet impact cooling of cladding surfaces, the droplet impact phenomena are photographed on the FeCrAl and zircaloy-4 (Zr-4) surfaces under different conditions. On the oxidized FeCrAl surface, the Leidenfrost phenomenon is not observed even when the surface temperature is as high as 550 ℃ with We > 30. Comparison of the impact behaviors observed on different materials shows that nucleate and transition boiling is more intensive on surfaces with larger thermal conductivity. The Leidenfrost point temperature (LPT) decreases with the solid thermal effusivity (${\sqrt{k{\rho}C_p}}$). However, the CHF temperature is relatively insensitive to the surface oxidation and Weber number. Droplet spreading diameter is analyzed quantitatively in the film boiling stage. Based on the energy balance a correlation is proposed for droplet maximum spreading factor. A mechanistic model is also developed for the LPT based on homogeneous nucleation theory.

산채나물의 관능적 특성에 근거한 소비자 기호도 유도 인자 분석 (Sensory Properties and Drivers of Liking Sanchae namul (seasoned dish with wild edible greens))

  • 양정은;이지현;김다윤;최은옥;정라나
    • 한국식품조리과학회지
    • /
    • 제30권2호
    • /
    • pp.200-211
    • /
    • 2014
  • This study was conducted to identify the sensory characteristics of four kinds of wild vegetables (samnamul, miyeokchwi, daraesoon and bangpung namul), which were prepared through three different soaking methods: SBS (soaking both before and after boiling), BS (soaking only after boiling) and B (never soaking). Moreover, it also compared the consumer acceptance of these samples in Korea. A descriptive analysis was performed on 12 samples (Sam_SBS, Sam_BS, Sam_B, Miyeokchwi_SBS, Miyeokchwi_BS, Miyeokchwi_B, Daraesoon_SBS, Daraesoon_BS, Daraesoon_B, Bangpung_SBS, Bangpung_BS and Bangpung_B) by 10 trained panelists. Furthermore, 115 consumers evaluated the overall acceptance (OL), acceptance of appearance (APPL), odor (ODL), flavor (FLL), and texture (TXTL) of the samples using a 9-point hedonic scale; they also rated the perceived intensities of toughness, roughness and moistness using a 9-point just-about-right (JAR) scale. According to the results of the PLSR data, the Sam_SBS sample, which had significantly (p<0.05) high muddiness, moistness, brightness, redness, oily appearance, sesame oil flavor, softness and greasy attribute scores, presented the highest acceptability and consumer desire scores for consumers. On the other hand, the Miyeokchwi_B and Bangpung_B samples, which had relatively high toughness, crispiness, roughness, bitterness and, astringent attributes scores, were the least preferred samples. Therefore, the muddiness, moistness, brightness, oily appearance, sesame oil flavor, softness and greasy attributes were drivers of "liking," whereas toughness, crispiness, roughness, bitterness, astringent attributes acted as drivers of "disliking" for consumers.

직접분사식 디젤기관에서 EGBE 첨가에 의한 배기가스 배출특성과 분석에 관한 실험적 연구 (An Experimental Study on Analyses and Exhaust Emission Characteristics with EGBE Addition in D.I. Diesel Engine)

  • 오영택;최승훈
    • 대한기계학회논문집B
    • /
    • 제26권3호
    • /
    • pp.498-506
    • /
    • 2002
  • Improvements of fuel properties have become essential for exhaust emission reduction as well as for optimization of directly-related design factors and exhaust gas aftertreatment. In this study, the potential possibility of oxygenated fuel such as ethylene glycol mono-n-butyl ether(EGBE) was investigated for the sake of smoke reduction from diesel engine. Because EGBE include oxygen content approximately 27%, it is a kind of effective oxygenated fuel that the smoke emission of EGBE is reduced remarkably in comparison with commercial diesel fuel, that is, it can supply oxygen component sufficient at high load and speed in diesel engine. And, it was tried to analyze the quantities of the low and high boiling point hydrocarbon among the exhaust emissions in diesel engine. It have been investigated by the quantitative analysis of the hydrocarbon $C_1$~ $C_{6}$ using the gas chromatography. This study was carried out by comparing the chromatogram with diesel fuel and diesel fuel blended EGBE 20vo1-%. The results of this study show that the hydrocarbon $C_1$~C$_{6}$ among the exhaust emission of the mixed fuels are exhausted lower than those of the diesel fuel at the all load and speed. In particular, high boiling point hydrocarbons such as $C_{5}$ and $C_{6}$ were reduced remarkably at high speed and load.d.

초음파 원용 레이저 가공에서 재료의 열적 물성이 표면상태에 미치는 영향에 관한 연구 (Study on the Effect of Thermal Property of Metals in Ultrasonic-Assisted Laser Machining)

  • 이후승;김건우;박종은;양민양;조성학;박종권
    • 대한기계학회논문집A
    • /
    • 제39권8호
    • /
    • pp.759-763
    • /
    • 2015
  • 레이저 가공 공정은 마스크 없이 전극을 가공할 수 있다는 장점 때문에 우수한 공정들 중의 하나로 제안되고 있다. 본 논문에서는, 서로 다른 열적 물성을 가지는 금속들에 레이저 가공을 수행하였다. 이 금속들은 서로 다른 표면형상, 열영향부, 그리고 재융착층을 나타내었고 이는 열전도도, 끓는점, 그리고 열확산계수에 의존하였다. 또한 재융착층을 제거하기 위하여 초음파 원용 레이저 가공을 적용, 높은 열확산계수를 가지는 재료에서 그 초음파 가진에 의한 표면 품질의 향상을 발견하였다.

BCI3Ne 혼합가스를 이용한 III-V 반도체의 고밀도 유도결합 플라즈마 식각 (High Density Inductively Coupled Plasma Etching of III-V Semiconductors in BCI3Ne Chemistry)

  • 백인규;임완태;이제원;조관식
    • 한국전기전자재료학회논문지
    • /
    • 제16권12S호
    • /
    • pp.1187-1194
    • /
    • 2003
  • A BCl$_3$/Ne plasma chemistry was used to etch Ga-based (GaAs, AIGaAs, GaSb) and In-based (InGaP, InP, InAs and InGaAsP) compound semiconductors in a Planar Inductively Coupled Plasma (ICP) reactor. The addition of the Ne instead of Ar can minimize electrical and optical damage during dry etching of III-V semiconductors due to its light mass compared to that of Ar All of the materials exhibited a maximum etch rate at BCl$_3$ to Ne ratios of 0.25-0.5. Under all conditions, the Ga-based materials etched at significantly higher rates than the In-based materials, due to relatively high volatilities of their trichloride etch products (boiling point CaCl$_3$ : 201 $^{\circ}C$, AsCl$_3$ : 130 $^{\circ}C$, PCl$_3$: 76 $^{\circ}C$) compared to InCl$_3$ (boiling point : 600 $^{\circ}C$). We obtained low root-mean-square(RMS) roughness of the etched sulfate of both AIGaAs and GaAs, which is quite comparable to the unetched control samples. Excellent etch anisotropy ( > 85$^{\circ}$) of the GaAs and AIGaAs in our PICP BCl$_3$/Ne etching relies on some degree of sidewall passivation by redeposition of etch products and photoresist from the mask. However, the surfaces of In-based materials are somewhat degraded during the BCl$_3$/Ne etching due to the low volatility of InCl$_{x}$./.

The Effect of Thermal Diffusivity on the System Efficiency of a DOTEC Cycle

  • Yoon, Jung-In;Choi, Kwang-Hwan;Kwakye-Boateng, Patricia;Son, Chang-Hyo;Kim, Hyeon-Ju;Lee, Ho-Saeng
    • 동력기계공학회지
    • /
    • 제17권5호
    • /
    • pp.58-63
    • /
    • 2013
  • In this study, the effect of deep ocean condenser inlet temperature ($T_{DOI}$), condenser inlet pressure ($P_{cond,in}$), and thermal diffusivity on system efficiency of some selected refrigerants was analyzed using HYSYS. The proposed DOTEC cycle is similar to the reheat Rankine cycle but eliminates irreversibilities by bleeding a fraction of the steam between certain stages of the turbine. The evaporator inlet mass flow rate, inlet temperature of turbine 1, turbine efficiency and inlet and outlet temperature of heat source were imposed. The working fluids considered are sorted in ascending order of their molecular weights as R717, R600a and R152a. Results indicated that a fluid with a lower boiling point temperature like R717 needs a corresponding high heat source and/or evaporator inlet pressure. Also, the response of thermal diffusivity closely follows the change in TDOI as an increase in $T_{DOI}$ increases $P_{cond,in}$ which reduces thermal diffusivity and system efficiency. Furthermore, the fluid with the nominal boiling point temperature has the highest efficiency with efficiency decreasing with an increase in TDOI.