• Title/Summary/Keyword: board-building

Search Result 312, Processing Time 0.02 seconds

Fire Resistance of High Strength Concrete followed by Thickness of Fireproof Plaster Board and Change of Adhesive Method (방화석고보드의 두께 및 접착방식 변화에 따른 고강도 콘크리트의 내화특성)

  • Jang, Ki-Hyun;Kim, Won-Ki;Jin, Hu-Lin;Lee, Jin-Woo;Yang, Seong-Hwan;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.05a
    • /
    • pp.67-71
    • /
    • 2008
  • The study analyzed on fire resistance of high strength concrete followed by thickness of fireproof plaster board and change of adhesive method. In spalling characteristics after fire resistance test, all four-side covering concretes were left out of testing screens. Thus, serious spalling was happened by exposing their internal reinforcing rods. in partial testing screens, spalling was happened till the internal concrete of main reinforcing rod. Only, temperature history didn't have special differences among changes of adhesive method. However, thickness of fireproof plaster board is very important. Namely, mock member reinforcing 25mm general adhesive + Bending was 583℃ in the highest temperature of surface part and 479℃ in the highest temperature of the main reinforcing rod, which was relatively good temperature history.

  • PDF

Combustion Characteristics of Bamboo Charcoal Boards (대나무숯 성형보드의 연소특성)

  • Park, Sang-Bum;Park, Joo-Saeng
    • Journal of the Korean Wood Science and Technology
    • /
    • v.40 no.1
    • /
    • pp.19-25
    • /
    • 2012
  • The fire retardant bamboo charcoal (BC) boards were manufactured for interior building materials in this study, The BC boards were manufactured by mixing and pressing of the bamboo charcoal, expanded vermiculite, and inorganic binder. The combustion behaviors of the BC boards were investigated using a cone calorimeter at an incident heat flux of 50 kW/$m^2$. Three building materials (plywood, BC board of Japan, and gypsum board) were used to observe the burning behaviors of weight loss, total heat release rate, and maximum heat release rate. Surface test and toxicity evaluation of the BC board were also conducted. The weight loss of the BC board (12.0%) was lower than the nonflammable gypsum board (15.6%) after burning of 10 min. Total heat release of the BC was 3 MJ/$m^2$ (KS standard 8 MJ/$m^2$) and total heat release rate of the BC was 20 kW/$m^2$ (KS standard 200 kW/$m^2$). Therefore, the BC boards were adjustable for the third-grade flame retardant building materials. External appearance change and mouse toxicity were not found in the BC boards after the combustion test.

A Study on the Mock up Test for Reduction of HCHO Using the Functional Gypsum Board (기능성 석고보드의 폼알데히드(HCHO) 저감성능 평가를 위한 실물시험(Mock up test)연구)

  • Kim, Hea-Jeong;Song, Kyoo-Dong;Lee, Yun-Gyu
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.12
    • /
    • pp.814-819
    • /
    • 2008
  • The purpose of this study was developing the building materials for creation the comfortable IAQ. By reducing formaldehyde(HCHO) known as the main factors of Sick House Syndrome. This material must be revealed the physical and eco-friendly performance, so this study set up the basic standards for building materials. The source of physical performance evaluation is Korea Industrial Standards and the base of environmental ability is the Eco Label considering certificated system related to an apartment house. Because the developed material was satisfied with the established standards, it was tested in mock-up room for obtaining the real date from indoor air. The mock-up test was conducted according environmental standard method for indoor air Quality of the ministry of environment. The result of this study were as follows; the functional building materials had a effect to reduce the formaldehyde concentration for a initial period without wall paper, so additional development is needed for application with the wall paper and the available period.

An Experimental Study on the Physical Properties of Wood Wool Board Applied Inorganic Polymer Binder (무기 폴리머 결합재를 사용한 목모 보드의 물리적 특성에 관한 실험적 연구)

  • Choi, Hae-Young;Park, Dong-Cheol;Yang, Wan-Hee;Lee, Se-Hyun;Song, Tae-Hyup
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.853-856
    • /
    • 2006
  • It is known that cement production not only consumes large amount of energy but also contributes substantially to the green house gas emission. Therefore, there is a demand to develope a new technology to produce energy efficient and environmental conscious cements. The most recent, wood wool ceramic board is being applied in various building material field, for example thermal insulating and acoustic absorption material. This paper focused on improvement of the physical properties for wood wool ceramic board applied inorganic polymer binder. As the result of this experiment, what we could obtain better wood wool ceramic board's properties such as density, water contests, water resistance and band strength, was 0.46, $10{\sim}12%$, 1.9% and $40kgf/cm^2$. This result can be applicable to commercial wood wool ceramic board.

  • PDF

LED sign board design using solar cells (태양전지를이용한 LED 표식장치 설계)

  • Lee, Hoong-Joo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.9
    • /
    • pp.2221-2226
    • /
    • 2009
  • This paper presents the design of the LED sign board system installed on the exterior of a building and powered by a photovoltaic system. A grid connected photovoltaic system has been designed with the capacity estimate of the load, battery and power. After the luminance and uniformity of LED load has been checked, the sign board and the solar cell modules have been installed. The performance and problems occurred during the field test for the photovoltaic LED sign board system have been analyzed.

Development of control and monitoring board for building energy saving valve (빌딩 에너지 절감 밸브용 제어 및 감시 보드 개발)

  • Oh, Jin-Seok;Kang, Young-Min;Jang, Jae-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.6
    • /
    • pp.895-902
    • /
    • 2018
  • Energy consumption in buildings is close to 40% of the total national energy consumption in developed countries such as US and Japan, and Korea accounts for 24% of total energy consumption. In buildings, HVAC can't freely control the cooling flow rate according to the required calorie, so energy is not used efficiently. Therefore, by using the energy saving valve, the flow rate can be controlled by the required amount of heat and the energy can be saved. In this paper, we define basic conditions and develop control and monitoring boards for building energy saving valves based on PIC processor with low power and high cost-effectiveness. The designed board displays and transmits in real time information about two temperature values, flow values and calculated calories for temperature difference measurement. The developed board will be useful for real - time monitoring of the state of the valve in the future and development of the valve for the offshore.

Moisture Absorption and Desorption Properties of Douglas Fir, Hinoki, Larch, Plywood, and WML Board in Response to Humidity Variation

  • PARK, Hee-Jun;JO, Seok-Un
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.4
    • /
    • pp.488-502
    • /
    • 2020
  • In this study, the moisture absorption and desorption properties presented by the Health-Friendly Housing Construction Standards of South Korea were compared using the wood of three tree species (Douglas-fir, Hinoki, Larch) and two types of wood-based materials(Plywood, WML Board). The national standards for functional building materials present that the amounts of moisture absorption and desorption should be at least 65g/㎡ on average, respectively according to the test method under KS F 2611:2009. Therefore, in this study, the moisture absorption/desorption properties of materials with no treatment (Control), with punching, and with surface stain finishing and the moisture absorption/desorption property improvement effects of the treatments were compared and analyzed. According to the results of this study, it was evaluated that all five types of wood and wood-based materials tested did not satisfy the amount of moisture absorption/desorption of at least 65g/㎡, which is the performance standard for moisture absorption/desorption functional building materials, indicating that untreated wood and wood-based materials cannot be applied as functional finishing materials according to the Health-Friendly Housing Construction Standards. The surface stain finishing greatly reduced the moisture absorption and desorption rates of the materials, and the amounts of moisture absorbed and desorbed were also shown to decrease by at least two times on average. When the surfaces of the materials were punched with Ø4mm holes at intervals of 20 mm, the moisture absorption/desorption areas increased from 18% to 51%, and this increase was shown to be capable of increasing the amounts of moisture absorbed/desorbed by 29% on average at the minimum, and 81% on average at the maximum. The effects of punching were shown to be identical even in cases where the materials were stain finished. For the application of wood or wood-based materials as eco-friendly, health-friendly, and moisture absorption/desorption functional building materials hereafter, it is judged that new physical and chemical improvement studies should be conducted, and treatment methods should be developed.

Problem Analysis of Sandwich Insulation Wall System (중단열 시스템의 문제점 분석)

  • Park, Jun-Ho;Yu, Jung-Ho
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.166-167
    • /
    • 2015
  • Because of energy crisis at all around the world, there is many method and system which for improving energy efficiency has appeared in construction industry. And then, 20% of entire building energy loss is emissed to exterior of buildings, that is important to building's entire energy efficiency. So, many research has been conducted for imporve exterior energy efficiency and generally it called insulation of wall. Method for wall insulation can be classified interior system and exterior system which defined installation place of insulation board whether interior or exterior of structural wall. However, interior system has thermal problem such as thermal-bridge which can be necessarily occur condensation. and exterior system has constructional problem such as difficult to construction because exterior and finish work so expensive construction cost than other insulation method. Thus, sandwich insulation wall system has been appeared for solving these problems. Sandwich insulation system must using wall connecting things because both side walls is divided by center insulation. At this, Through the heat at wall connecter, it can be occured thermal-bridge and broken insulation board when under construction will be bring negative effect by reducing wall thickness and insulation deficit. At this study, we were compared previous sandwich insulation system and analysis these system's problem for develop the improving constructability and performance of sandwich insulation system.

  • PDF

Combined Effect of Fireproofing Gypsum Board on Residual Strength and Fire Resistance of Fiber Addition High Strength Concrete-Model Column (방화석고보드 부착이 섬유혼입 고강도 콘크리트 모의 기둥부재의 내화특성 및 잔존내력에 미치는 영향)

  • Yang, Seong-Hwan
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.4
    • /
    • pp.442-450
    • /
    • 2012
  • In this study, fire resistance and residual strength were examined after the addition of PF fiber and bonding fireproofing gypsum board to a high strength concrete-model column of 50 MPa grade. At the beginning of the experiment, all the properties of base concrete appeared to satisfy the target range. In terms of the internal temperature record, a trend of slightly high temperature was shown when the fireproofing gypsum board was not bonding, and when the fireproofing gypsum board was bonding, as PF content increased gradually, the temperature was gradually lowered. In terms of the relationship, as time elapsed a low temperature was shown when fiber was mixed, and when the board was bonding, the trend of lower temperature could be confirmed. Meanwhile, in terms of spalling property, a severe explosive fracture was generated at PF 0%, and falling off was prevented as the fiber content was increased; however, discoloration and a multitude of cracks were discovered, and when the board was bonding, the trend in which the exterior became satisfactory when the content was increased emerged. In terms of the residual compressive strength, measuring of strength could not be performed at PF 0% without bonding of board, and the strength was increased as the fiber content was increased; however, there was a decrease in strength of about 30 ~ 40%, and in the case of PF 0% with the bonding of board, the strength could be measured; however, about an 80% decrease in strength was shown, and only about a 10 ~ 20% decline in strength was displayed, as the range of decrease was reduced as the fiber content was increased. Considering all of these factors, it was determined that a more efficient enhancement of fire resistance was obtained when two methods are applied in combination rather than when the PF fiber content and bonding of fireproofing gypsum board are utilized individually.

A Study on the Estimation of Adhesive Stability According to Organic.lnorganic Mixed Tile Bond Type for Application of Polishing Tile to Dry Wall System (건식벽체에 폴리싱타일을 적용하기 위한 유기.무기질 혼합계 타일접착제 종류에 따른 부착안정성 평가에 관한 연구)

  • Oh, Sang-Keun;Lee, Gi-Jang;Yoo, Jae-Kang;Kim, Su-Ryun;Lee, Sung-Il
    • Journal of the Korea Institute of Building Construction
    • /
    • v.2 no.3
    • /
    • pp.163-170
    • /
    • 2002
  • Recently, polishing tile(porcelain homogeneous polished tile) was used in the construction field as a finishing material. But, there happened some problems such as tile exfoliation by construction condition in early ages. Also, for use of polishing tile in the dry wall system which used to lightweight wall, the examination of adhesive stability of polishing tile is needed. In this study, adhesive strength of Polishing tile was investigated by tile bond types on gypsum board and non asbestos board coated by tar-urethane and Polymer modified cementitious waterproofing membrane(Series I). Then, the effect of heat stress and vibration was estimated on gypsum and non asbestos board(Series II). As the result of study are the follows; (1) Polishing tile(600$\times$400mm) construction on waterproofing layer : Both laboratory estimation and spot examination sieve were happened that fall of tile because their hardening speed is late. (2) To using powder style adhesives in the dry wail with waterproofing layer : Adhesive strength of tile is Influenced by interface bond area and base side condition. (3) Shock and heat stresses : obvious decline of adhesive strength is not happened