• Title/Summary/Keyword: blue and red light

Search Result 781, Processing Time 0.03 seconds

Effect of Light Quality on the Photorespiration in Pisum sativum L. (완두에서 광호흡에 미치는 광질의 영향)

  • 이순희
    • Journal of Plant Biology
    • /
    • v.33 no.3
    • /
    • pp.203-210
    • /
    • 1990
  • Effects of blue and red light on photorespiration in the leaf disks of pea were studied. The rate of total 14CO2 fixation was more or less higher under red light than blue light irradiation of the same quantum (94.8 $\mu$Em-2.S-1/mV). The release of 14CO2 by photorespiration was more stimulated under blue than red light. Among the photorespiratory intermediates, 14C was more incorporated ito serine under blue light than red light. However, 14C was more incorporated into glycine under red light than blue light. The incorporation of 14C into glycolate was very low under both light qualities, but higher under red light than blue light. Among the enzymes related to photorespiration, only glycolate oxidase was activated and/or synthesized by blue light irradiation. Moreover, more 14C2 was released from glycoate-1-14C under blue light than red light irradiation, but 14C2 release from glyoxylate-1-14C and glycine-1-14C showed no difference by the either light qualities. These results suggest that blue light is more effective in the photorespiratory CO2 evolution than red light. The reason is considered that glycolate is easily metabolized under blue light due to the stimulation of the glycolate oxidase activity.

  • PDF

Effect of Blue, Red and Far-red Lights on Seeding Growth and Cotyledon Chlorophyll Content of Lagenaria siceraria Standl (광질처리에 따른 박 유묘의 생장 및 자엽의 엽록소 함량 변화)

  • 강진호;전병삼
    • Journal of Life Science
    • /
    • v.11 no.2
    • /
    • pp.166-172
    • /
    • 2001
  • Various types of the seeding of bottle gourd widely used as a rootstock of watermelon has been required to satisfy the farmers need. The study was done to determine the effect of light quality of blue, red and far-red lights treated with light emitting diodes on growth and morphology of bottle goured seeding and chlorophyll content of its cotyledons. The lights were treated in the growth chamber for 7 days to the seeding elapsed 8 days after sowing under natural condition, and 64 hole trays with commercial bedsoil. Plant height, length and diameter of hypocotyl, leaf area of cotyledon and first true leaf, its leaf length, number of true leaves, fraction and total dry weight were measured. Red light shortened and slenderized the hypocotyl, which lengthened by far-red light and thickened by blue light. Plant height was declined in order of far-red light treatment, blue and red lights mainly due to difference of hypocotyl length, Area and length of the first true leaf became smaller and shorter under far-red light than under the other lights. However, blue light increased leaf area of cotyledons. Two cultivars cv. Yongjadaemok and cv. Kunghap had different response to the light treatments in total seedling dry weight(dw); far-red and red light treatments showed the greatest and the least dw of hypocotyl, respectively, while blue and red lights did the greatest dw of the other organs. Among the ratio of each organ dw to total dw, those of hypocotyl and true leaves were different between the light treatments; the highest ratio of hypocotyl dw to total dw was observed in far-red light treatment but the lowest was in red light treatment. Those of the true leaves were the lowest in far-red light and similar response in blue or red light treatment. Chlorophyll content of cotyledons was decreased in order of red light treatment, blue and far-red lights, meaning that short period light treatment may influence photosynthesis of seeding and afterward its growth.

  • PDF

Growth Characteristics of Paprika Seedlings Affected by Different LED Light Qualities Raising Seedlings Using Rockwool Cube (암면큐브를 이용한 육묘에서 LED 광질에 따른 파프리카 묘의 생육 특성)

  • Lee, Se-Hyoung;Ko, Baul;Bae, Jong Hyang;Ku, Yang Gyu;Kim, Ho Cheol
    • Journal of Bio-Environment Control
    • /
    • v.31 no.1
    • /
    • pp.60-66
    • /
    • 2022
  • This study was conducted to investigate growth characteristics of paprika seedlings according to various qualities of LED light (red : blue = 10 : 0, red : blue = 8 : 2, red : blue = 2 : 8, white). Plant height and stem were significantly longer or thicker as red light ratio increased. Leaf area of paprika seedlings with red light was larger or no significant differences in a mixed light of red and blue. Dry weight of seedling was in the same with the result of leaf area. Seedlings with White light was significantly less than others in all characteristics. As red light ratio was increased, relative growth rate increased. As blue light ratio was increased, the net assimilation amount increased. Considering plant height, leaf area and production ability of dry matter per unit leaf area, the using mixed red and blue lights was suitable, especially at a mixed red : blue = 8 : 2.

Effects of Sources and Quality of LED Light on Response of Lycium chinense of Photosynthetic Rate, Transpiration Rate, and Water Use Efficiency in the Smart Farm

  • Lee, Seungyeon;Hong, Yongsik;Lee, Eungpill;Han, Youngsub;Kim, Euijoo;Park, Jaehoon;Lee, Sooin;Jung, Youngho;You, Younghan
    • Korean Journal of Ecology and Environment
    • /
    • v.52 no.2
    • /
    • pp.171-177
    • /
    • 2019
  • Smart farm is a breakthrough technology that can maximize crop productivity and economy through efficient utilization of space regardless of external environmental factors. This study was conducted to investigate the optimal growth and physiological conditions of Chinese matrimony vine (Lycium chinense) with LED light sources in a smart farm. The light source was composed of red+blue and red+blue+white mixed light using a LED system. In the red+blue mixed light, red and blue colored LEDs were mixed at ratios of 1:1, 2:1, 5:1, and 10:1, with duty ratios varied to 100%, 99%, and 97%. The experimental results showed that the photosynthetic rate according to the types of light sources did not show statistically significant differences. Meanwhile, the photosynthetic rate according to the mixed ratio of the red and the blue light was highest with the red light and blue LED ratio of 1:1 while the water use efficiency was highest with the red and blue LED ratio of 2:1. The photosynthetic rate according to duty ratio was highest with the duty ratio of 99% under the mixed light condition of red+blue+white whereas the water use efficiency was highest with the duty ratio of 97% under the mixed light of red+blue LED. The results indicate that the light source and light quality for the optimal growth of Lycium chinense in the smart farm using the LED system are the mixed light of red+blue (1:1) and the duty ratio of 97%.

Effect of Light Quality (Red, Blue) on the Major Components of Hot Pepper Fruit (신미종(辛味種) 고추의 주요(主要) 성분(成分)의 함량(含量)에 미치는 광질(光質) (Red, Blue)의 영향(影響))

  • Kim, Kwang-Soo;Roh, Seung-Moon;Park, Jyung-Rewng
    • Korean Journal of Food Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.162-165
    • /
    • 1979
  • In order to study the red-coloring effects of hot pepper fruit by light treatment during after-ripening period, 'Karak Geumjang No. 2 green hot pepper fruits, Capsicum annuum L., after 30 to 35 days from flowering were harvested and white, red and blue light treatments at the energy level of $40\;{\mu}watt/cm^2/sec$ were given at $25^{\circ}C$. When compared with white light, total chlorophyll content was strikingly decreased by blue light treatment and no difference in the chlorophyll contents between red and white light was observed. The chlorophyll a and b showed a similar decreasing patterns as shown in the case of total chlorophyll. Total carotenoid content was higher in the blue light treatment by 31% than the white light. However, red light decreased the carotenoid condent as compared to the white light treatment. But ${\beta}-carotene$ was not changed by red light as compared to white light. Blue light treatment increased ${\beta}-carotene$ content (0.71 mg%-f.w.) as compared to white light treatment (0.56 mg%-f.w.). Therefore, blue light treatment increased red-coloring responses of hot pepper fruit during after-ripening period. The capsaicin content was slightly increased by blue light and no red light influence was observed.

  • PDF

The Harmony Perception According to Color Coordination of Identical Tone for Menswear (남성복의 동일 색조 색상 코디네이션에 대한 조화감 지각)

  • Lim, Ji-Young
    • Journal of the Korean Society of Costume
    • /
    • v.57 no.6 s.115
    • /
    • pp.32-45
    • /
    • 2007
  • Among 96 color combination stimuli, male students evaluated 47 set as harmonized, but female students evaluated 32 set, so proved that male's range of harmony more extensive than that of female. Specially red shirt and yellow red necktie in all tone was evaluated as harmonized coloration by both male and female students. Female evaluated as the best harmonious coloration that red shirt-yellow necktie in dark, blue shirt-yellow necktie in dark, purple shirt-red necktie in light, green shirt-blue necktie in dull, and male evaluated red shirt-yellow red necktie in light, blue shirt-yellow necktie in light, purple shirt-red necktie in light, green shirt-yellow necktie in dark. It is significant difference between female and male on red-green in vivid, and blue-purple in vivid, blue-blue in dull, blue-yellow in dark, and purple-purple in dull. And shirt color and necktie color, necktie color and tone, tone and perceiver' gender influenced on the harmony evaluation by interaction.

Changes of PBP Quantity and FNR Activity by Light Wavelengths in Anabaena variabilis (光波長에 따른 Anabaena variabilis 의 Phycobiliprotein 含量 및 FNR 活性度 變化)

  • Kim, Jung-Suk;Chang, Nam-Kee
    • The Korean Journal of Ecology
    • /
    • v.14 no.1
    • /
    • pp.87-99
    • /
    • 1991
  • Changes of phycobiliproteins(PBP) quantity and ferredoxin-NADP reductase(FNR) activity were investigated in various light illuminated cyanobacteria, Anabaena variabilis. PBP components were increased under blue light illumination, whereas decreased under red light illumination. PBP contents were twofolds in blue light than in red light. In view of the PBP composition, allophycocyanin(APC) in red light was higher 5.5% and phycoerythrocyanin(PEC) in blue light was higher 2.2% than in white light-illuminated PBP. It was suggested that PBP changes in bule light be the results of regulation of photosysthetic efficiency and protection of photosystem, whereas PBP changes in red light be effected by adaptation of adequate harvesting of light energy in photosystem. Changes of FNR activity were highest in red light, and sequenced lower to blue light and green light. It means that light-dependent production rate of NADP is the highest in red light. The difference of values was larger than that of values in comparison of red and blue light. It was suggested that increasing of FNR activity be due not to the function of isozyme, but to the synthesis of enzymes. Because of NAD/NADP regulation-effect to metabolism, it was considered that FNR activity might influence the metabolism indirectly and explain the probability of regulation in pathways of key enzyme activation. FNR activity was directly proportional to intensity of light. Optimum temperature and pH were about 25℃ and 7.5, respectively.

  • PDF

Graft-taking Characteristics of Watermelon Grafted Seedlings as Affected by Blue, Red and Far-red Light-emitting Diodes (수박 접목묘의 활착 특성에 미치는 청색, 적색 및 원적색 발광다이오드의 영향)

  • 김용현;박현수
    • Journal of Biosystems Engineering
    • /
    • v.28 no.2
    • /
    • pp.151-156
    • /
    • 2003
  • This study was performed to investigate the effect of light quality on evapotranspiration and graft-taking characteristics of watermelon grafted seedlings using blue, red and far-red light-emitting diodes (LED). At initial stage of graft-taking, blue light increased the evapotranspiration rate (EVTR) of grafted seedlings as compared to effects of red and far-red on EVTR of grafted seedlings. Grafted seedlings graft-taken under red and blue LED showed the high graft-taking of 100% and 96%, respectively. However, grafted seedlings graft-taken under far-red LED showed the graft-taking of 80% and survival of 60% with low seedlings quality after hardening. The stem of grafted seedlings graft-taken under red light was elongated but blue light suppressed the stem elongation. The leaf area of grafted seedlings graft-taken under red light was increased. It is concluded that the effect of light quality using LED on graft-taking of watermelon grafted seedlings was significantly recognized. Considering the duration of quality of grafted seedlings graft-taken under artificial lighting, LED could be used as an effective lighting sources to validate the continuance of seedling quality.

Effect of Light Source on Organic Acid, Sugar, and Flavonoid Concentrations in Buckwheat

  • Kim, Sun-Lim;Lee, Han-Bum;Park, Cheol-Ho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.47 no.1
    • /
    • pp.42-47
    • /
    • 2002
  • The major free sugars of buckwheat plants were fructose, glucose, and maltose but their contents and compositions were influenced by the different wavelength of light. Free sugar contents of Clfa 39 (Fagopyrum tataricum) were higher than those of Yangjul-maemil (Fagopyrum esculentum) regardless of the light sources. As treated with red and blue light, the free sugar contents in the leaves of buckwheat plants were slightly increased, but their contents in the stems and flowers were lower than those of natural light condition. Under the natural light condition, maltose was detected in every tissues of buckwheat plants, but as treated with blue and red light, it was not detected in the flowers of buckwheat plants. Citric, malic and acetic acid were detected as major organic acids in buckwheat plants. Red and blue lights decreased the total organic acid contents in buckwheat plants as compared with natural light condition. It was considered that blue light are less active than red light for the accumulation of organic acids. Tataric acid was detected only in the leaves of buckwheat plants, however, as treated with red and blue light, it was not detected in the leaves of Clfa 39. Flowers of Yangjul-maemil contained a considerable amount of rutin and quercitrin. Only small amount of quercitrin was detected in leaves, but it was not detected in stems. On the other hand, Clfa 39 leaves contained a considerable amount of rutin, quercetin and small amount of quercitrin, but quercitrin and quercetin were detected only in the stems of Clfa 39. Red and blue lights significantly decreased the contents of rutin, quercitrin, and quercetin in buckwheat plants as comparing with natural light condition. Rutin content in the flowers of Clfa 39 was increased under the red and blue light conditions.

The effects of light colour on female rabbit reproductive performance and the expression of key genes in follicular development

  • Xiaoqing, Pan;Xinglong, Wang;Le, Shao;Jie, Yang;Feng, Qin;Jian, Li;Xia, Zhang;Pin, Zhai
    • Journal of Animal Science and Technology
    • /
    • v.64 no.3
    • /
    • pp.432-442
    • /
    • 2022
  • The purpose of this study was to analyse the effects of light colour on rabbit reproductive performance and the expression of key follicular development genes. Rabbits (n = 1,068, 5 months old, 3.6-4.4 kg live body weight) were divided randomly into four groups, housed individually in wire mesh cages and exposed to red, green, blue, and white light-emitting diode (LED) light (control). The lighting schedule was 16 L : 8 D-15 d / 150 lx / 6:00 am-22:00 pm (3 d preartificial insemination to 12 d postartificial insemination). Red light and white light affected the conception rate and kindling rate and increased the total litter size at birth (p < 0.05). The effects of red light on litter size at weaning, litter weight at weaning, and individual weight at weaning increased compared with the green and blue groups. The effects of red light on live litter size at birth were increased compared with those in the blue group (p < 0.05). Compared to white light, green and blue light reduced the number of secondary follicles (p < 0.05). Compared to red light, green and blue light reduced the number of tertiary follicles (p < 0.05). Compared with white light, red LED light resulted in greater ovarian follicle stimulating hormone receptor and luteinizing hormone receptor mRNA expression (p < 0.05). Compared with green and blue LED light, red LED light resulted in greater B-cell lymphom-2 mRNA expression (p < 0.05). Compared with green LED light, red LED light inhibited FOXO1 mRNA expression in rabbit ovaries (p < 0.05). Red light can affect the reproductive performance of female rabbits and the expression of key genes for follicular development.