• Title/Summary/Keyword: blows-up and global solutions

Search Result 3, Processing Time 0.018 seconds

BLOW-UP AND GLOBAL SOLUTIONS FOR SOME PARABOLIC SYSTEMS UNDER NONLINEAR BOUNDARY CONDITIONS

  • Guo, Limin;Liu, Lishan;Wu, Yonghong;Zou, Yumei
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.4
    • /
    • pp.1017-1029
    • /
    • 2019
  • In this paper, blows-up and global solutions for a class of nonlinear divergence form parabolic equations with the abstract form of $({\varrho}(u))_t$ and time dependent coefficients are considered. The conditions are established for the existence of a solution globally and also the conditions are established for the blow up of the solution at some finite time. Moreover, the lower bound and upper bound of the blow-up time are derived if blow-up occurs.

CRITICAL FUJITA EXPONENT FOR A FAST DIFFUSIVE EQUATION WITH VARIABLE COEFFICIENTS

  • Li, Zhongping;Mu, Chunlai;Du, Wanjuan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.1
    • /
    • pp.105-116
    • /
    • 2013
  • In this paper, we consider the positive solution to a Cauchy problem in $\mathbb{B}^N$ of the fast diffusive equation: ${\mid}x{\mid}^mu_t={div}(\mid{\nabla}u{\mid}^{p-2}{\nabla}u)+{\mid}x{\mid}^nu^q$, with nontrivial, nonnegative initial data. Here $\frac{2N+m}{N+m+1}$ < $p$ < 2, $q$ > 1 and 0 < $m{\leq}n$ < $qm+N(q-1)$. We prove that $q_c=p-1{\frac{p+n}{N+m}}$ is the critical Fujita exponent. That is, if 1 < $q{\leq}q_c$, then every positive solution blows up in finite time, but for $q$ > $q_c$, there exist both global and non-global solutions to the problem.

LOCAL AND GLOBAL EXISTENCE AND BLOW-UP OF SOLUTIONS TO A POLYTROPIC FILTRATION SYSTEM WITH NONLINEAR MEMORY AND NONLINEAR BOUNDARY CONDITIONS

  • Wang, Jian;Su, Meng-Long;Fang, Zhong-Bo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.1
    • /
    • pp.37-56
    • /
    • 2013
  • This paper deals with the behavior of positive solutions to the following nonlocal polytropic filtration system $$\{u_t=(\mid(u^{m_1})_x{\mid}^{{p_1}^{-1}}(u^{m_1})_x)_x+u^{l_{11}}{{\int_0}^a}v^{l_{12}}({\xi},t)d{\xi},\;(x,t)\;in\;[0,a]{\times}(0,T),\\{v_t=(\mid(v^{m_2})_x{\mid}^{{p_2}^{-1}}(v^{m_2})_x)_x+v^{l_{22}}{{\int_0}^a}u^{l_{21}}({\xi},t)d{\xi},\;(x,t)\;in\;[0,a]{\times}(0,T)}$$ with nonlinear boundary conditions $u_x{\mid}{_{x=0}}=0$, $u_x{\mid}{_{x=a}}=u^{q_{11}}u^{q_{12}}{\mid}{_{x=a}}$, $v_x{\mid}{_{x=0}}=0$, $v_x|{_{x=a}}=u^{q21}v^{q22}|{_{x=a}}$ and the initial data ($u_0$, $v_0$), where $m_1$, $m_2{\geq}1$, $p_1$, $p_2$ > 1, $l_{11}$, $l_{12}$, $l_{21}$, $l_{22}$, $q_{11}$, $q_{12}$, $q_{21}$, $q_{22}$ > 0. Under appropriate hypotheses, the authors establish local theory of the solutions by a regularization method and prove that the solution either exists globally or blows up in finite time by using a comparison principle.