• Title/Summary/Keyword: blood velocity

Search Result 393, Processing Time 0.023 seconds

The Role of Nail-fold Capillary Blood Velocity in Evaluating Cold Hypersensitivity in the Hands: A Pilot Study (수부냉증 진단을 위한 조갑모세혈관 혈류속도 측정 예비연구)

  • Ahn, Ilkoo;Park, Ki-Hyun;Lee, Siwoo;Jeong, Kyoungsik;Bae, Ji-yong;Kwon, Jung-yeon;Kong, Kyung-hwan;Go, Ho-yeon;Bae, Kwang-Ho
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.35 no.6
    • /
    • pp.242-248
    • /
    • 2021
  • This study aims to compare nail-fold capillary blood velocity (CBV) according to the presence or absence of cold hypersensitivity in the hands (CHH) using nail-fold capillaroscopy under cold stress conditions. Eleven participants were taken from the cohort study for observing long-term health status of the faculty of Semyung university. Seven of the participants displayed CHH while four showed signs of non-CHH. CBV between 0 and 60 seconds (S1) and between 240 and 300 seconds (S2) was measured under cold stress for 5 minutes, respectively, and the average value was used to compare non-CHH group and CHH group. Body mass index, Nogung (PC8) temperature and temperature difference between Nogung (PC8) and Hyeopbaek (LU4) were significantly lower in CHH group compared to non-CHH group. The S2-S1 CBV difference was negatively correlated with PC8 temperature and PC8-LU4 temperature, and positively correlated with cold pattern score and cold hypersensitivity visual analog scale. The CHH group had a lower CBV overall than non-CHH group, and the S2-S1 CBV difference was significantly higher in the CHH group than in non-CHH group. This study suggests that CBV measured by nail-fold capillarosopy might be a useful indicator of cold hypersensitivity properties.

A New Mean Frequency Extension Method in Doppler System (초음파 도플러 시스템에서 새로운 평균 주파수 확장 방법)

  • 백광렬
    • Journal of Biomedical Engineering Research
    • /
    • v.16 no.2
    • /
    • pp.183-190
    • /
    • 1995
  • The use of ultrasound pulsed Doppler systems has become increasingly popular due to the advantages of easy measurements of blood velocity, volume blood blow, and irregularities of the circulatory system. However, the 2-D Doppler systems have several problems, such as range ambiguity, low signal to noise ratio, and slow frame rate. The mean frequency aliasing problem originating from the pulse repetition frequency is one of major limitations in pulsed Doppler systems. A conventional approach to resolve this problem is tracking the mean frequency close to and beyond the Nyquist frequency along the temporal axis. In this paper, a new concept of tracking the mean frequency along the spatial axis is proposed. The proposed technique is fault tolerant by nature and more suitable for multi gate and 2-D Doppler system than conventional methods.

  • PDF

A Spatial Average Method Using 2nd Order Sampling in Ultrasonic Doppler System (초음파 도플러 시스템에서 2차 샘플링을 이용한 공간축상의 평균 방법)

  • 백광렬
    • Journal of Biomedical Engineering Research
    • /
    • v.16 no.3
    • /
    • pp.279-288
    • /
    • 1995
  • Ultrasonic Doppler systems for the purpose of estimating blood flow velocity, blood flow volume, and flow imaging are commonly used due to advantages of non-invasive and real time observation. Specially, the technical developments of color flow mapping (2-D Doppler) systems have made a relatively rapid progress. However, the 2-D Doppler systems have several problems, such as the range ambiguity, low signal to noise ratio, and slow frame rate. The slow frame rate problem is resolved by using the spatial average which is a method to acquire more data samples for mean frequency estimation. In this paper, spatial average method using the 2nd order sampling instead of quadrature sampling is proposed. The experimental results show that the proposed methods have good performance and easy application to the color flow mapping system.

  • PDF

Changes of Blood Flow Characteristics for different Coil Locations after the Embolisation of Lateral Aneurysms (측방 동맥류 색전술 후 코일 위치에 따른 혈류 유동의 변화)

  • 이계한;송계웅;변홍식
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.124-127
    • /
    • 2002
  • Ceil embolisation technique has been used to treat the intracranial aneurysms. Microcoils inserted into the aneurysm sac induce the blood flow stagnation inside the aneurysm sac, which causes the thrombus formation and embolisation of aneurysm. Since the intraaneurysmal flow patterns affect the embolisation process, we want to measure the flow field for different locations of coil inside the aneurysm sac . Lateral aneurysm models are manufactured using rapid prototyping, and the velocity fields are measured using particle image velocitimeter. Distally blocked models showed less flow into the aneurysm sac comparing to proximally blocked models. Also blocking the neck of aneurysm showed better inflow blocking comparing to blocking the dome of aneurysm. These results suggest that distal neck should be the preferred locations of coil for aneurysm embolisation.

  • PDF

Diagnosis of neuropathic foot of diabetics using photo-plethysmography (용적맥파 측정법을 이용한 신경병증 당뇨병 족부질환의 진단)

  • Nam, Ki-Chang;Ryu, Chang-Yong;Jung, Won-Hyuk;Kim, Jin-Tae;Park, Joong-Hoon;Kim, Deok-Won
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.39-41
    • /
    • 2005
  • The population of diabetes is continuously increasing because of the economic development and the lifestyle modification. If diabetes become chronic condition, it can cause various complications. Among many other complications, diabetic foot is the most fatal issue since it may require amputation of the legs. Diabetic foot has three different types such as neuropathic, neuro-ischemic and ischemic. Among these types, patients of neuropathic foot experience sensory abnormality. Nerve conduction velocity (NCV) is used for diagnosing neuropathic foot but this method uses strong electric stimulus to cause severe pain to the patients In this study, two channel photo-plethysmography was used as noninvasive screening tool for distinguish neuropathic foot and normal group by observing blood flow of both finger and toe simultaneously.

  • PDF

A COMPUTATIONAL MODEL FOR OSMOSIS PHENOMENA OF CELLS THROUGH SEMI-PERMEABLE MEMBRANES

  • Kim, Im-Bunm;Ha, Tae-Young;Sheen, Dong-Woo
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.13 no.2
    • /
    • pp.123-140
    • /
    • 2009
  • The effect of a solute concentration difference on the osmotic transport of water through the semi-permeable membrane of a simple cell model is investigated. So far, most studies on osmotic phenomena are described by simple diffusion-type equations ignoring all fluid motion or described by Stokes flow. In our work, as the governing equations, we consider the coupled full Navier-Stokes equations which describe the fluid motion and the full transport equation that takes into account of convection and diffusion effects. A two dimensional finite difference model has been developed to simulate the velocity field, concentration field, and semi-permeable membrane movement. It is shown that the cell swells to regions of lower solute concentration due to the uneven water flux through the semi-permeable membrane. The simulation is applied on a red blood cell geometry and the relevant results are presented.

  • PDF

Effect of the Pulsatile Flow on the Morphological Changes of the Endothelial Cells in Blood Vessel (맥동유동이 혈관내 내피세포의 형태변화에 미치는 영향)

  • Suh, Sang-Ho;Yoo, Sang-Sin;Cho, Min-Tae;Park, Chan-Young;Chang, Jun-Keun
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.531-534
    • /
    • 2000
  • The objective of this investigation is to find effects of the pulsatile flow on the morphological changes of the endothelial cell(E.C.) in blood vessel. The shear flow experiment system is used to get the morphological changes of the E.C. The shapes of E.C. are simulated by the cosine curves and computer simulation is used to calculate the pressure and shear stress fields on the E.C. The inlet boundary condition is given from the measured velocity data of femoral artery. The endothelial cells reduce their heights in the flow field so as to reduce the pressure and wall shear stress on the surface. As the exposed time increases, the shear stress and pressure on the E.C. are reduced under the pulsatile flow. The shear stresses on the cell surface show the minimum values during the deceleration phase.

  • PDF

The Numerical study for flow characteristics of bifurcation in blood vessel (혈관 분지부의 유동 특성에 대한 수치해석 연구)

  • Lee, In-Sub;Ryou, Hong-Sun
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.741-746
    • /
    • 2003
  • The main objective of present study is to obtain information for flow characteristics, such as velocity and wall shear stress, of bifurcation in blood vessel. Branch flows for Newtonian fluids are simulated by using Fluent V.6.0. The numerical simulations are carried out for five cases divided by different values of bifurcation angle and area ratio. As a result of simulation, high wall shear stress is appeared at the bifurcated region. As increasing bifurcation angle, pressure drop is increasing. In addition, as the area is decreasing, pressure drop and wall shear stress is increasing.

  • PDF

Flow Analysis of Resin in an Extrusion Die for the Production of Medical Catheter Tubes (의료용 카테타 튜빙의 압출을 위한 다이내의 수지 흐름해석)

  • Lee, M.A.;Lyu, M.-Y.;Shin, D.J.;Kim, T.K.
    • Transactions of Materials Processing
    • /
    • v.24 no.2
    • /
    • pp.89-94
    • /
    • 2015
  • Medical catheter tubes are disposable devices that are inserted into the body cavities such as the pleura, trachea, esophagus, stomach, urinary bladder, ureter, or blood vessels for surgical procedures. Each hole of the inner tube is called a lumen, which is used as a passage for drug injections, waste discharge, polypus removal, blood transport, or injection of a camera or sensor. The catheter tube is manufactured by extrusion. The flow in the inner extrusion die affects the thickness and diameter of the tube. In the current study computer simulation of flow in an extrusion die for catheter tubing was performed. Velocity, pressure, shear rate, and shear stress were investigated and the die design was examined.

Flow Characteristics of Non-Newtonian Fluids in the Stenosed Branch Tubes (협착이 발생된 분기관내 비뉴턴유체의 유동특성 연구)

  • Suh, S.H.;Yoo, S.S.;Roh, H.W.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.3
    • /
    • pp.307-316
    • /
    • 1996
  • The objective of present study is to obtain information on the stenosis effects in the branch tubes for industrial piping system and atherogenesis processing in human arteries. Numerical solutions for flows of Newtonian and non-Newtonian fluids in the branch tubes are obtained by the finite volume method. Centerline velocity and pressure along the bifurcated tubes for water, blood and aqueous Separan AP-273 solution are computed and the numerical results of blood and the Separan solution are compared with those of water. Flow phenomena in the stenosed branch tubes are discussed extensively and predicted effectively. The effects of stenosis on the pressure loss coefficients are determined.

  • PDF