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ABSTRACT. The effect of a solute concentration difference on the osmotic transport of water
through the semi-permeable membrane of a simple cell model is investigated. So far, most
studies on osmotic phenomena are described by simple diffusion-type equations ignoring all
fluid motion or described by Stokes flow. In our work, as the governing equations, we consider
the coupled full Navier-Stokes equations which describe the fluid motion and the full trans-
port equation that takes into account of convection and diffusion effects. A two dimensional
finite difference model has been developed to simulate the velocity field, concentration field,
and semi-permeable membrane movement. It is shown that the cell swells to regions of lower
solute concentration due to the uneven water flux through the semi-permeable membrane. The
simulation is applied on a red blood cell geometry and the relevant results are presented.

1. INTRODUCTION

The phenomena of osmosis, reverse osmosis, and electro-osmosis are of considerable im-
portance in both life and physical sciences and they involve the separation of gaseous and
liquid mixtures through semi-permeable membranes. Reverse osmosis is an energy efficient
technique for separating liquid solutions and gas mixtures and can be applied in the field of
water purification, chemical, electro-chemical, biochemical, radioactive waste treatment, and
food processing [20]. Electro-osmosis can be defined as the effect of an external electric field
on an osmosis and reverse osmosis system. It has been widely used in many applications such
as dewatering, contaminant transport mitigation, fluid transport in eyes [9, 19]. Osmosis is of
great importance in biological and medical processes where the solvent is water. The trans-
port of water and other molecules across biological membranes is essential to many processes
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in living organisms. When the extracellular solution is highly concentrated compared to the
intracelluar part, i.e., when the cells are in hypertonic condition, more water molecules pass
osmotically from the inside to the outside of the cell than the water molecules passing inward
to the cell; as a result, the cells dehydrate and shrink. On the other hand, if cells are placed
in hypotonic solution, then more water molecules from the extracellular region move into the
cell than the water molecules get out; in these circumstances, the cells swell with the excess
water and eventually burst open. If cells are in isotonic condition in the extracellular fluids,
this results in an equilibrium between osmosis into the cell and out of the cell. Cells respond
most positively to this kind of extracellular fluid. This intricate balance in osmosis in and out
of the cells needs to be maintained at all times. An obvious application of this phenomenon is
the development of protocols for the cryopreservation of living cells. The cryopreservation of
living cells depends on the ability of cells to survive osmotic stress, which may be seriously im-
posed during freezing and thawing protocols [4]. The main questions are about the success of
freezing and thawing process related to the irreversibility of membrane structural changes after
thawing [17], the localization of cryoprotectant in internal and external cell membranes, the
intracellular structural changes following cryopreservation and reasons for the need to impose
different kinetics in thawing and freezing [12, 13]. All of these questions require a complete
understanding of water and solute transport into and out of cells in hypertonic or hypotonic
conditions.

Researches on these topics were performed mostly in the experimental fields [22, 8, 10].
A few molecular level simulations of osmosis, reverse osmosis and electro-osmosis in fluid
mixtures using semi-permeable membranes are reported [14, 11, 15]. All the molecular level
simulations were carried out using the molecular dynamics simulation which basically solves
ordinary differential equations and conclude solutions in molecular level. Very recently, a
macroscopic approach to get solutions has been reported for these phenomena. Khan and
Reppert [6] simulated the PDEs for the electro-osmosis model in a closed channel using the
finite element method and compared them to analytical solutions. In their work, the geometry
is fixed without introducing any interface, which makes it easy to simulate. Kirichenko [7]
considered the features of mass transfer in a horizontal nonflow-through-reverse-osmosis cell.
From the set of the NS equations in the Boussinesq approximation, a set of ordinary differential
equations for perturbations is derived by the normal mode method in the case of the exponential
concentration profile and it is solved numerically. In contrast, in spite of its importance, there
is little numerical study for osmosis phenomena. In this paper, we are going to focus on the
study of osmosis especially in the macroscopic level.

In the theoretical and numerical study for osmosis initiated by Pedley in 1982 [16]. the
author studied the phenomenon of a natural convection driven by osmosis through a vertical
non-moving semi-permeable membrane and derived simple approximate formula for estimat-
ing the total osmotic flux across a membrane and the results are interpreted in the light of
experiments to measure osmotic permeability. In general, the cell and the ambient fluid are
moving and one must solve for both the fluid motion and the distribution of the solute concen-
tration. The solute is advected by the fluid flow, and the solute can influence the fluid motion
through the change in buoyancy force as well as surface tension. However, surface tension
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effects are difficult to determine. The simplest mathematical model of the response of a cell to
varying solute concentration in the surrounding fluid is to assume that the fluid motion remains
zero and ignore all mechanical properties of the cell membranes. For initially uniform solute
concentration, Batycky et al. showed that the fluid velocity is zero while a cell changes its
volume due to the osmotic flow of water through its interfaces. For nonuniform and time de-
pendent concentration, the cells were modeled as small sacs filled with homogeneous medium
[2]. Jaeger et al. [5] assumed that the cells are modeled as simple vesicles, the intracellu-
lar and extracellular medium is a binary solution, the solute is completely nonpermeating, the
membrane has constant properties, no fluid motion is induced by membrane forces or density
variations, and no cell motion is induced by gravity. However, their assumptions are too simple
to describe the nature of the cells and transport properties of cell membrane. To study more
accurate interaction phenomena of cells, we have to determine the hydrodynamic velocity field
induced by the diffusion process, simultaneously with the solution of the concentration field
which reflects highly nonlinear behaviors owing to the coupling of these fields.

Anderson [1] introduced the Stokes equations which the fluids inside and outside obey for
a rigid spherical vesicle and obtained an expression for the osmophoretic velocity. This ve-
locity is proportional to the concentration gradient but it is independent of the fluid viscosity.
Zinemanas et al. [23] applied this to deformable membranes, but using a simple Laplacian
equation for the concentration field. To our knowledge, no computational studies on solving
the coupled velocity and concentration fields have been achieved and reported about osmotic
phenomena. In this paper, we take into account the coupled Navier-Stokes equations which
contain not only the density variations but also gravity to describe fluid motion, and the full
transport equation that consists of convection and diffusion effects. The mathematical formula-
tion and underlying physics are presented in Sect 2. The equations are written in dimensionless
form and characteristic numbers(Grashof, Schmidt) are introduced. The numerical method
used in our computation is presented in Sect 3. Results from our simulation is addressed in
Sect 4. Conclusions follow in Sect 5.

2. MATHEMATICAL MODELING

In this study, we consider the natural convection fluid motion in a cell and its surrounding
media driven by osmosis through a semi-permeable membrane in a bounded computational
domain. The computational domain is a two or three dimensional space with the space and
time variables x and t. ψ(x, t) represents the continuous volumetric density field (such as
mass density ρ(x, t), concentration c(x, t)). The total amount of the property Ψ(t) within the
control volume Ω(t) is given by

Ψ(t) ≡
∫

Ω(t)
ψ(x, t)dV.

For moving interface, the Reynolds transport theorem can be stated as

dΨ
dt

=
∫

Ω(t)

(
∂ψ

∂t
+ uf · ∇ψ

)
dΩ +

∫

S(t)
(um − uf )ψ · dS, (2.1)
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which is a sum of contributions from the time rate change of ψ within V, convection of ψ
across the membrane at the fluid velocity uf , and transport of ψ across the membrane due to
the difference in the fluid and membrane velocities um. Now, we take ψ(x, t) = c(x, t), then
Ψ(t) = N(t) is the total number of moles of solute in each phase. The concentration field
c(x, t) satisfies the following convection diffusion equation:

∂c

∂t
+ uf · ∇c = D∇2c, (2.2)

with the diffusion constant D. By using Equations (2.1) and (2.2), the Divergence Theorem
yields

dN

dt
= A

[
D

∂c

∂ν
+ ν · (um − uf )c

]
, x ∈ ∂Ω. (2.3)

Here, A denotes the area of the cell and ν the unit outward normal to the cell, and thus ν·um and
ν·uf represent the outward normal components of the velocities um and uf to ∂Ω, respectively.
Since the membrane is impermeable to solute, the solute flux across the membrane is always
zero. Therefore, Equation (2.3) gives the interface condition on c at the membrane interface:

D
∂c

∂ν
+ ν · (um − uf )c = 0, x ∈ ∂Ω, (2.4)

With the transport equation for concentration field, the equations of mass and motion of incom-
pressible fluid are given as follows:

∇ · uf = 0, (2.5)
∂uf

∂t
+ (uf · ∇)uf =

µ

ρ
∇2uf − ∇p

ρ
+ g, (2.6)

where ρ, µ and g are the fluid density, dynamic viscosity, and gravitational force, respectively.
Consider a free convection system in which the fluid concentration varies about some bulk
value cB . If the fluid is at cB and the fluid does not move, the pressure gradient in the system
is given by the equation of motion with uf = 0. This implies

∇p = ρ(cB)g. (2.7)

If the velocity gradient results entirely from concentration differences, the fluid motion is usu-
ally quite slow, and therefore Equation (2.7) may be assumed to be a reasonably good approx-
imation of the pressure gradient even in the moving fluid. With this assumption, we expand ρ
by a Taylor series in c about bulk concentration cB ,

ρ = ρ(cB) + (
dρ

dc
)cB(c− cB) + · · ·

= ρ(cB) + βρ(cB)(cB − c) + · · · .

Here, we have introduced the coefficient of volume expansion β evaluated at cB . This is defined
by β = 1

V (∂V
∂c ) = 1

1/ρ(∂(1/ρ)
∂c ) = −1

ρ(∂ρ
∂c ). By substituting all assumptions, we may express
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Equation (2.6) as

∂uf

∂t
+ (uf · ∇)uf =

µ

ρ(cB)
∇2uf +

g
ρ(cB)

(
dρ

dc
)cB (cB − c). (2.8)

This is the equation of motion used in free convection when a bulk concentration cB is defined
and it is also limited to low fluid velocities and small concentration variations.

The driving force for membrane motion is a difference in net osmotic pressure on both
membrane sides. This osmotic pressure is defined as

Π = cRT,

where R is the universal gas constant and T is the absolute temperature. For an observer fixed
on the membrane, the water passes through the membrane with velocity −um. The osmotic
pressure and the stress field differences across the membrane induce a normal solvent osmotic
velocity relative to the membrane as given by [1]

ν · um = −LRT (cf − cc) = −LRT∆c,

where cf and cc represent the extracellular and intracellular solute concentrations, L is a hy-
draulic permeability. Note that the van’t Hoff osmotic term is valid for low solute concen-
trations and that the normal stress is used instead of the pressure difference, ∆P . The cell
membrane is impermeable to the solute, but water permeates through the membrane with a
normal velocity ν · uf . Therefore the membrane must move with equal and opposite velocity
−ν · uf . This fact gives the following interface conditions for the solute on the cell boundary:

τ · uf (x, t) = 0, x ∈ ∂Ω(t), (2.9)
ν · uf (x, t) = LRT∆c(x, t), x ∈ ∂Ω(t), (2.10)

D
∂c

∂ν
= ν · uf · c(x, t), x ∈ ∂Ω(t). (2.11)

The other boundary conditions applied on the outer computational domain is the Dirichlet
boundary condition for c field and the Neumann boundary condition for u. In a homogeneous
external medium, these interface conditions lead to the shrinking of cells for hypertonic en-
vironment (ν · uf > 0) and to the swelling of cells in the hypotonic case (ν · uf < 0), and
thus they represent osmosis. Our natural convection model is described by the coupled equa-
tions that consist of the convection-diffusion for concentration field (2.2), the fluid momentum
equations (2.5),(2.8) and the cell interface conditions (2.9), (2.10), and (2.11). The boundary
conditions for concentration and velocity fields in computational boundary domain are given
as neumann conditions. These equations can be made in dimensionless forms by introducing
reference values. In free convection, there is no easily available reference velocity. Therefore,
instead of using it, the ratio µ/ρl has been used for U with following dimensionless variables:

u∗ = uf lρ/µ, t∗ =
µt

ρl2
, c∗ =

c− cB

cf − cB
,
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where µ, l, and cf − cB are the dynamic viscosity, characteristic length, and characteristic
concentration difference in the system, respectively. The resulting dimensionless equations are
then given by

∇∗ · u∗ = 0, (2.12)
∂c∗

∂t∗
+ u∗ · ∇∗c∗ =

1
Sc
∇∗2c∗, (2.13)

∂u∗

∂t∗
+ (u∗ · ∇∗)u∗ = ∇∗2u∗ − c∗Gr

g
g
, (2.14)

where Sc = ν/D, Gr = ρ2gl3(cf − cB)/µ2 · 1/ρ(cB) · (∂ρ/∂c)cB are the Schmidt number
and the Grashof number for mass transfer.

Similarly, the dimensionless interface conditions are given by

τ · u∗(x, t) = 0, (2.15)

ν · u∗(x, t) =
LRTl(cf − cB)

ν
∆c∗(x, t), (2.16)

D
∂c∗

∂ν
= LRTl ν · u∗c∗(x, t). (2.17)

After computing all the concentration field, velocity field and membrane movement velocity,
we shall use the level set technique to “capture” the interface as in [21]. Our level set function
is denoted as φ and it is taken positive outside the cell and negative inside the cell. Therefore,
the interface of the semi-permeable membrane cell is the zero level set of φ, that is the set of
points of φ = 0. In our algorithm, we initialize φ as the signed distance function from the
interface. And solving the level set equation,

φt + um · ∇φ = 0, (2.18)

we can track the interface of cell membrane from the zero level set of φ. This equation (2.18)
moves the zero level set of φ exactly as the actual cell interface moves.

3. ALGORITHM

3.1. Flow chart. Firstly, we begin by looking at the brief flow chart and move on in details.

• Step 1. Initialize φ(x, 0) to be the signed normal distance to the cell membrane.
• Step 2. Solve the momentum equation, the transport equation and the level set equation

for one time step to get uf (x, t + ∆t), c(x, t + ∆t) and φ(x, t + ∆t).
• Step 3. We have now advanced one time step. The zero level set of φ(x, t+∆t)) gives

the new interface position of semi-permeable membrane.
• Repeat Steps 2 and 3 until the natural convection flow reaches the steady state.

In Step 3, the computation will be declared to have reached steady state when either the relative
change in the L2 norm of the time step velocity difference is less than input tolerance,√∑

x |uf (x, t + ∆t)− uf (x, t)|2√∑
x |uf (x, t)|2 ≤ tol, (3.1)
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or the relative error in the intra and extracellular average concentrations are less than input tol-
erance,

∣∣∣∣∣

∑
xf

cf/Nf −
∑

xc
cc/Nc∑

xf
cf/Nf

∣∣∣∣∣ ≤ tol, (3.2)

where Nf , Nc are numbers of nodes in extra and intracellular regions, respectively.

3.2. Discretization. M×N rectangular mesh will be used for the numerical simulation. With
h as the mesh size, we define for i = 0, ..., M − 1, j = 0, ..., N − 1,

xi,j = (ih, jh), ui,j = u(xi,j), ci,j = c(xi,j), φi,j = φ(xi,j),

where M,N are the number of grids in each x−, y− direction.
From this section, u represents uf unless otherwise stated.

(1) Discretization of the transport equation.
We will use the first order forward Euler scheme to evolve in time

cn+1 − cn

∆t
= −(un · ∇)cn + D∇2cn, (3.3)

where ∆t is the time step size. We will use the second order central difference scheme
for the approximation of the convection and diffusion terms in the transport equa-
tion. On the interface (semi-permeable membrane), the second order central difference
scheme with the interface condition will be implemented.

(2) Discretization of the momentum equation.
With updating the concentration field in Equation (3.3), we also use the second order
central difference scheme for the approximation of the convection and diffusion terms
in the momentum equation. On the interface, a second order central difference scheme
with interface condition is implemented.

un+1 − un

∆t
= −(un · ∇)un +

µ

ρ(cB)
∇2un +

g
ρ(cB)

(
dρ

dc
)cB (cB − cn+1). (3.4)

(3) Discretization of the level set equation.
When we solve for level set equation, we need to compute approximations to the spatial
derivatives of φ.

φt = −um · ∇φ = R(φ), (3.5)

where R is the spatial differential operator of the level set equation. We use the first
order Godunov’s scheme or a third-order ENO approximations. For the temporal dis-
cretization of the equation, we use a simple forward Euler or the following third order
TVD-Runge-Kutta type time discretization. The time discretization for Equation (3.5)
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is

φ(1) = φ(0) + ∆tR(φ(0)),

φ(2) =
3
4
φ(0) +

1
4
φ(1) +

1
4
∆tR(φ(1)),

φ(3) =
1
3
φ(0) +

2
3
φ(2) +

2
3
∆tR(φ(2)),

where R is the discrete approximation to R. Denote the updated φ by φn+1.
(4) Reinitialization of the distance function.

To make sure that φ(x, t) is a signed distance function, we construct a new distance
function ψ by solving

ψt = S(φn+1)(1− |∇ψ|) (3.6)

with S(φ) = φ√
φ2+ε2

until we reach a steady state solution ψ. This steady state solu-

tion ψ is then used to replace φn+1, again denoted by φn+1.
We have used the following discretization to evolve Equation (3.6). Define

a = D−
x ψi,j = (ψi,j − ψi−1,j)/h,

b = D+
x ψi,j = (ψi+1,j − ψi,j)/h,

c = D−
y ψi,j = (ψi,j − ψi,j−1)/h,

d = D+
y ψi,j = (ψi,j+1 − ψi,j)/h,

and

G(ψi,j) =





√
(max((a+)2, (b−)2) + max((c+)2, (d−)2)− 1, if ψ0

i,j > 0,√
(max((a−)2, (b+)2) + max((c−)2, (d+)2)− 1, if ψ0

i,j < 0,

0, otherwise,

where + and − represent the positive and negative parts, respectively. Now, we update
(3.6) using

ψn+1
i,j = ψn

i,j −∆tS(φi,j)G(ψn
i,j). (3.7)

The stopping criterion for the iteration is given by
∑
|ψn

i,j |<α |ψn+1
i,j − ψn

i,j |
N

< ∆th2,

where N is the number of grid points where |ψn
i,j | < α. Usually, ∆t = h/5, ε = h

have been chosen during the computation. Then Equation (3.7) guarantees that ψ is a
signed normal distance function [18].

(5) Computation of ∆t.
During the implementation, the time step must satisfy the CFL conditions due to the
convective and diffusive terms in Equation (3.3). Also due to convective and viscous
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terms in Equation (3.4), restrictions on the time step are imposed to satisfy the follow-
ing conditions:

∆tc ≡ h

max |u| , ∆td ≡ h2

D
, ∆tv ≡ h2

ν
, ∆tn+1 = 0.5min(∆tc,∆td, ∆tv).

4. NUMERICAL RESULTS

We have validated our method considering the following problems. In the numerical exam-
ples, we use the following constants unless otherwise specified (D = 1µm2/s,ν = 1µm2/s,
LRT = 1µm/s · M , g is ignorable.). Consider a computational domain 10µm × 10µm in
the case of Examples 1 and 2. The domain is initially filled with sodium water with different
concentration value and the governing equations are following:

∇ · u = 0, (4.1)
∂c

∂t
= D∇2c− u · ∇c + a, (4.2)

∂u
∂t

+ (u · ∇)u =
µ

ρ
∇2u +

1
ρ(cB)

g
(

dρ

dc

)

cB

(cB − c) + f , (4.3)

φt − u · ∇φ = 0, (4.4)
τ · u = 0, (4.5)

ν · u(x, t) = LRT∆c(x, t) + b1, (4.6)

D
∂c

∂ν
= ν · u · c(x, t) + b2, (4.7)

where a(x, t), f(x, t) = (f1(x, t), f2(x, t)), b1, b2 are source terms which are generated by
exact solutions. For typical biological system the values of the physical parameters are : l ≈
1− 10µm, c = 5× 10−10mol/m3, µ = 10−3N · s/m2, T = 300K, L = 10−11m3/N · s, γ =
10−3N/m. Let us convert the units to g, µm, s and list them on the following table.

The Grashof number represents the relative importance of the buoyancy forces with re-
spect to the viscous forces.The influence of this number on the shape of the free boundary,
the concentration distribution and the flow field is shown in figures (in numerical results). In
general, for large values of the Grashof number, the convective terms in the Navier-Stokes
equations dominate the diffusive terms and finer grid is necessary in order to take into account
the velocity boundary layer near the cell membrane. Since the Grashof number appears on the
right-hand side of the second component of the Navier-Stokes equations, the corresponding
buoyancy force acts on the fluid particles in upward direction.A large Gr indicates a large con-
centration gradient in the boundary layer of the membrane, and hence a larger effect of natural
convection on performance.
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TABLE 1. Units and Values in Experiments

Parameters Units Values

L (hydraulic permeability) µm/min · atm,m3/N · s 0.001644 µm2 · s/g
R (universal gas constant) atm/M ·K,N ·m/K ·M 8.3147 g/s2 · µm ·M ·K
T (absolute temperature) K(kelvin) 300 K
γ (surface tension) N/m 1 g/s2

κ (curvature) 1/(µm)
D (diffusivity) µm2/s 7.8-7800 µm2/s
µ (dynamic viscosity) N · s/m2, g/s · µm 10−6g/s · µm, (ν)1− 104

C (concentration) mol per liter 1 M
l (cell radius) µm 3µm
g′ (gravity factor) µm · s2/M 10−4 − 103

4.1. Example 1: Continuous concentration field. Consider the following solutions for Equa-
tions (4.1)–(4.7):

u(x, y, t) = −0.5
e−t

x2 + y2

(
x

y

)
, (x, y) ∈ Ωc ∪ Ωf ,

c(x, y, t) = ceq +
e−t

1 + x2 + y2
, (x, y) ∈ Ωc ∪ Ωf .

In the numerical test, ceq is an equilibrium value and taken as 262.5 Mols. Then, the corre-
sponding source terms are generated by the above solutions.

Initially, the concentration value at the center point is the highest and it has decreasing val-
ues as it goes far away from the center. Since the velocity at the center is not defined, we set the
center velocity value as the maximum velocity near the center. After 0.3 seconds, the relative
concentration error between the averages of intracellular and extracellular concentration val-
ues is less than given tolerance. These validation computations were done in single precision;
the value of tol was set to 10−3. The exact and numerical concentration and velocity fields
are shown in Figure 1. Figure 2 (a) compares the level curves of initial state and state after
0.3sec. Since there is no gravity and forcing factor except concentration difference, the cell
only swells having the same center at all times. For a convergence test, we have tested with
various meshes (h = 0.2, h = 0.1, h = 0.05), and plotted the relative errors in velocity in Fig-
ure 2 (b). The numerical convergence accuracy in this simmulation is about 1.4. Even though
we implemented the second order scheme for the space discretization, the scheme applied to
interface and boundary decreases the whole order of accuracy.

4.2. Example 2: Discontinuous concentration field. As a second example, consider the case
where the concentration field is discontinuous. The exact solutions for (4.1)-(4.7) are obtained
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FIGURE 1. Concentration and velocity field at the steady state under continu-
ous concentration field at 0.3 sec.: (a) analytic concentration, (b) concentration
obtained by numerical experiment, (c) analytic velocity field, (d) velocity field
obtained by numerical experiment. Computational geometry is 10µm×10µm,
and h = 0.1. Solid curves in each figures represent the cell membrane inter-
face.

as follows. Corresponding source terms are generated by the exact solutions:

u(x, y, t) = −0.5
e−t

x2 + y2

(
x

y

)
, (x, y) ∈ Ωc ∪ Ωf ,

c(x, y, t) =

{
cc − (1− e−t)(1 + x2 + y2), (x, y) ∈ Ωc,

cf + 100(1−e−t)
1+x2+y2 , (x, y) ∈ Ωf ,

where cc and cf represent intracellular and extracellular concentrations and initially set as 290
Mols and 235 Mols. As time proceeds, the average value of outside concentration is increasing
and the average value of inside concentration is decreasing. After 0.35 seconds, the relative
concentration error does not change, therefore we arrive at the steady state solution. The exact
and numerical concentration and velocity fields are shown in Figure 3. Due to the effect of a
solute concentration difference on the osmotic stress, water rushes in to the area of high solute
concentration, enlarging the cell. The level curves are shown in Figure 4(a). For a convergence
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FIGURE 2. These results were calculated under continuous concentration
field at 0.3 sec. (a) The initial level curve (inner circle) and the level curve
(outer circle) at time =0.3 sec. The computational geometry is 10µm×10µm,
and h = 0.1. (b) The relative errors of velocity field in L2 norm according to
various mesh spacings.

test, we have tested with various meshes (h = 0.2, h = 0.1, h = 0.05), and have plotted the
relative errors in velocity in Figure 4 (b) which shows a good convergence result.

4.3. Example3: Erythrocytes. In the case of Gr = 0, the osmotic swelling of a cell is sim-
ulated by imposing a uniform concentration values between the inner and outer solutions. At
first, a circle cell(spherical-like) is considered, where only a change of volume is expected with
the shape remaining unaltered. Figure shows the evolution of various variables under the ef-
fects of different initial osmotic loads, cin − cout. In order to assess the practical importance
of the natural convection driven model by osmosis, we examine the realistic biophysical values
with various parameter values. A human biconcave erythrocyte (red blood cell) is described as

(x2 + y2 + z2)2 + P (x2 + y2) + Qz2 + R = 0, (4.8)

where P = −15.3µm2, Q = 42.0µm2, R = −10.6µm4.
In this example, we make a couple of assumptions, erythrocytes are far from each other so

that we can consider a single cell model. The shape of erythrocyte may be described as a bicon-
cave disc as in (4.8) , but for simplicity, we choose to represent the erythrocyte as a simple disc-
shaped cell with a constant surface area as well as the case of biconcave cell. This simplifying
assumption is supported by the experimental observation in [3]. The simulation of osmotic
phenomena can be performed by considering realistic values for the various parameters. The
permeability of RBC is in the range of 4-10 µm/min·atm, around 10−6µm/s·Pa and a mean
radius is about 3-5 µm. We have chosen the radius 3 µm circle for our cell in the 32µm×32µm
computational domain. The grid size in each direction chosen here is 0.1 µm. We have used the
temperature of water T = 273K, the universal gas constant R = 0.08206atm/Mol ·K and the
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FIGURE 3. Concentration and velocity fields at the steady state under dis-
continuous concentration field: (a) analytic concentration, (b) concentration
obtained by numerical experiment, (c) analytic velocity field, (d) velocity field
obtained by numerical experiment. Computational geometry is 10µm×10µm,
and h = 0.1. Solid curves in each figures represent the cell membrane inter-
face.

hydraulic permeability L = 10µm/min · atm, respectively. The concentration values in the
intra and extra of the cell are given 140Mol and 93.6Mol respectively as in [5]. The diffusivity
D is 780µm2/s and the membrane permeability is P = LRT = 4.03µm/s ·Mol. The kine-
matic viscosity ν varies from 1 µm2/s to 10000 µm2/s. The related numerical computations
are shown in following figures.

Let us first assume that there is no affecting gravitational force. This is reasonable when we
are specially dealing with micro-nano bio-cell membranes. Figure 5 (a) shows the concentra-
tion field at steady state. In the beginning of the simulation, there is an apparent concentration
gradient between the intra and extra of cell but at the steady state the concentrations converge.
Two solid curves represent level curves of initial (inner) and steady state (outer). In Figure 5
(b), we have plotted that the average concentration values in the intra and extra of the cell and
observed that concentration outside of a cell is decreasing and concentration inside of cell is
gradually increasing thus they reach the steady state. Figure 5 (c) shows the velocity field at
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FIGURE 4. These results was calculated under discontinuous concentration
field. (a) The initial level curve (inner circle) and level curve (outer circle) at
time =0.3 sec. The computational geometry is 10µm×10µm, and h = 0.1.
(b) The relative errors of velocity field in L2 norm according to various mesh
spacings.

steady state within |φ(x, t)| < 5h, two solid curves are level curves of initial (inner) and steady
state (outer). In Figure 5 (d), we have plotted the graph of the maximum velocity values.

Now, we take into account of a gravitational force. The gravity factor g′ = g
ρ(cB)(

dρ
dc )cB =

(0, 100µm · s2/Mol) is assumed. Figure 6 (a) shows the concentration field at steady state.
In the beginning of the simulation, there is an apparent concentration gradient between the
intra and extra of a cell, but at the steady state, the concentrations converge. Two solid curves
represent level curves of initial (inner) and steady state (outer). With the presence of gravity,
the cell not only swells but also migrates in the direction where the gravity force applies. In
Figure 6 (b), we have plotted the average concentration values in the intra and extra of the cell
and observed that the concentration outside the cell is decreasing and that inside the cell is
gradually increasing until they reach the steady state. Figure 6 (c) shows the velocity field at
steady state within |φ(x, t)| < 5h, two solid curves are level curves of initial (inner) and steady
state (outer). In this figure, we observed some numerical instability on the interface, ENO or
WENO scheme for space discretization could be one method to overcome this phenomena. In
Figure 6 (d), we have plotted the graph of the maximum velocity values. However, when the
viscosity value is above 1000 µm2/s, the membrane movement is ignorable.

As a final numerical result, we demonstrate the case of two dimensional biconcave shape
cell as given in Equation (4.8). The bulk concentration is 21 Mol, and the initial intracellular
concentration is 114.5 Mol. The computational domain is 16µm × 32 µm and the grid size
in each direction is 0.1 µm. The diffusivity D is 780µm2/s, the membrane permeability
P = LRT = 4.03µm/s · M , the kinematic viscosity 1 µm2/s, and the gravity factor is
assumed to be zero. In Figure 7 (a), two solid curves represent the level curves at initial(inner)
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and steady state(outer). In Figure 7 (b), we have plotted the average concentration values in
the intra and extra of the cell and observed that the concentration outside the cell is decreasing
and that inside the cell is gradually increasing until they reach the steady state. Figure 7 (c)
shows the fluid velocity field at steady state within |φ(x, t)| < 5h. The RBC is initially set
as hypotonic condition, thus we can observe that fluid movement from the extracellular region
into the RBC cell which makes the cell swell. In Figure 7 (d), we have plotted the graph of the
maximum velocity values.
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FIGURE 5. A simple circle erythrocyte model, (a) Concentration field at
steady state, two solid curves are level curves of RBC; inner and outer circles
at the initial and steady states. (b) The plot of average concentration value ver-
sus time iteration (c) The enlarged velocity field at steady state (right) within
|φ(x, t)| < 5h, two solid curves are level curves of RBC; inner and outer cir-
cles at initial and steady state. (d) The plot of maximum velocity versus time.
The computational geometry is 32µm×32µm with the mesh h = 0.25.
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FIGURE 6. A simple circle erythrocyte model with gravity, (a) Concentra-
tion field at steady state, two solid curves are level curves of RBC; inner and
outer circles at initial and steady state. (b) The plot of average concentra-
tion value versus time iteration (c) The enlarged velocity field at steady state
(right) within |φ(x, t)| < 5h, two solid curves are level curves of RBC; inner
and outer circles at initial and steady state. (d) The plot of maximum velocity
versus time. The computational geometry is 32µm×32µm with the mesh
h = 0.25.

5. CONCLUSIONS

In this paper, we have discussed about the transport phenomena across a semi-permeable
membrane. Unlike an ionic transport across a membrane, the variables are macroscopic con-
centration and velocity fields. Considering the semi-permeable interface condition, we have
established the coupled transport and Navier-Stokes equation which describe the osmotic phe-
nomena. In section 3, we have designed the numerical algorithm to simulate our osmotic
model. Verification studies were performed by constructing the exact solutions in the case
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FIGURE 7. A biconcave erythrocyte model. (a) Level curves at initial and
steady state. (b) The plot of average concentration value versus time iteration
(c) Velocity field at steady state . (d) The plot of maximum velocity versus
time. The computational geometry is 16µm×32µm with the mesh h = 0.1.

of continuous, discontinuous concentration fields. Our results indicate that our method can
predict the cell movement in hypotonic solution. Similar simulations on simple erythrocyte ge-
ometry were studied in section 4. Most studies on osmotic phenomena are described by simple
diffusion-type equations ignoring all fluid motion, thus are interested in obtaining concentra-
tion field. In our work, we could get not only the concentration field but also the velocity field
over the domain tracking the cell membrane interface.
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