• Title/Summary/Keyword: blood flow distribution

Search Result 118, Processing Time 0.021 seconds

Robust Ultrasound Multigate Blood Volume Flow Estimation

  • Zhang, Yi;Li, Jinkai;Liu, Xin;Liu, Dong Chyuan
    • Journal of Information Processing Systems
    • /
    • v.15 no.4
    • /
    • pp.820-832
    • /
    • 2019
  • Estimation of accurate blood volume flow in ultrasound Doppler blood flow spectrograms is extremely important for clinical diagnostic purposes. Blood volume flow measurements require the assessment of both the velocity distribution and the cross-sectional area of the vessel. Unfortunately, the existing volume flow estimation algorithms by ultrasound lack the velocity space distribution information in cross-sections of a vessel and have the problems of low accuracy and poor stability. In this paper, a new robust ultrasound volume flow estimation method based on multigate (RMG) is proposed and the multigate technology provides detail information on the local velocity distribution. In this method, an accurate double iterative flow velocity estimation algorithm (DIV) is used to estimate the mean velocity and it has been tested on in vivo data from carotid. The results from experiments indicate a mean standard deviation of less than 6% in flow velocities when estimated for a range of SNR levels. The RMG method is validated in a custom-designed experimental setup, Doppler phantom and imitation blood flow control system. In vitro experimental results show that the mean error of the RMG algorithm is 4.81%. Low errors in blood volume flow estimation make the prospect of using the RMG algorithm for real-time blood volume flow estimation possible.

A Dual Lung Scan for the Evaluation of Pulmonary Function in Patients with Pulmonary Tuberculosis before and after Treatment (폐결핵치료전후(肺結核治療前後) 방사성동위원소(放射性同位元素)스캔에 의(依)한 폐기능(肺機能)의 비교(比較))

  • Rhee, Chong-Heon
    • The Korean Journal of Nuclear Medicine
    • /
    • v.1 no.2
    • /
    • pp.1-25
    • /
    • 1967
  • In 20 normal cases and 39 pulmonary tuberculosis cases, regional pulmonary arterial blood flow measurements and lung perfusion scans by $^{131}I$-Macroaggregated albumin, lung inhalation scans by colloidal $^{198}Au$ and spirometries by respirometer were done at the Radiological Research Institute. The measured lung function tests were compared and the results were as the following: 1. The normal distribution of pulmonary blood flow was found to be $54.5{\pm}2.82%$ to the right lung and $45.5{\pm}2.39%$ to the left lung. The difference between the right and left pulmonary arterial blood flow was significant statistically (p<0.01). In the minimal pulmonary tuberculosis, the average distribution of pulmonary arterial blood flow was found to be $52.5{\pm}5.3%$ to the right lung and $47.5{\pm}1.0%$ to the left lung when the tuberculous lesion was in the right lung, and $56.2{\pm}4.4%$ to the right lung and $43.8{\pm}3.1%$ to the left lung when the tuberculous lesion was in the left lung. The difference of pulmonary arterial blood flow between the right and left lung was statistically not significant compared with the normal distribution. In the moderately advanced pulmonary tuberculosis, the average distripution of pulmonary arterial blood flow was found to be $26.9{\pm}13.9%$ to the right lung and $73.1{\pm}13.9%$ to the left lung when the tuberculous lesion was more severe in the right lung, and $79.6{\pm}12.8%$ to the right lung and $20.4{\pm}13.0%$ to the left lung when the tuberculous lesion was more severe in the left lung. These were found to be highly significant statistically compared with the normal distribution of pulmonary arterial blood flow (p<0.01). When both lungs were evenly involved, the average distribution of pulmonary arterial blood flow was found to be $49.5{\pm}8.01%$ to the right lung and $50.5{\pm}8.01%$ to the left lung. In the far advanced pulmonary tuberculosis, the average distribution of pulmonary arterial blood flow was found to be $18.5{\pm}11.6%$ to the right lung and $81.5{\pm}9.9%$ to the left lung when the tuberculous lesion was more severe in the right lung, and $78.2{\pm}8.9%$ to the right lung and $21.8{\pm}10.5%$ to the left lung when the tuberculous lesion was more severe in the left lung. These were found to be highly significant statistically compared with the normal distribution of pulmonary arterial blood flow (p<0.01). When both lungs were evenly involved the average distribution of pulmonary arterial blood flow was found to be $56.0{\pm}3.6%$ to the right lung and $44.0{\pm}3.2%$ to the left lung. 2. Lung perfusion scan by $^{131}I$-MAA in patients with pulmonary tuberculosis was as follows: a) In the pretreated minimal pulmonary tuberculosis, the decreased area of pulmonary arterial blood flow was corresponding to the chest roentgenogram, but the decrease of pulmonary arterial blood flow was more extensive than had been expected from the chest roentgenogram in the apparently healed minimal pulmonary tuberculosis. b) In the pretreated moderately advanced pulmonary tuberculosis, the decrease of pulmonary arterial blood flow to the diseased area was corresponding to the chest roentgenogram, but the decrease of pulmonary arterial blood flow was more extensive in the treated moderately advanced pulmonary tuberculosis as in the treated minimal pulmonary tuberculosis. c) Pulmonary arterial blood flow in the patients with far advanced pulmonary tuberculosis both before and after chemotherapy were almost similar to the chest roentgenogram. Especially the decrease of pulmonary arterial blood flow to the cavity was usually greater than had been expected from the chest roentgenogram. 3. Lung inhalation scan by colloidal $^{198}Au$ in patients with pulmonary tuberculosis was as follows: a) In the minimal pulmonary tuberculosis, lung inhalation scan showed almost similar decrease of radioactivity corresponding to the chest roentgenogram. b) In the moderately advanced pulmonary tuberculosis the decrease of radioactivity in the diseased area was partly corresponding to the chest roentgenogram in one hand and on the other hand the radioactivity was found to be normally distributed in stead of tuberculous lesion in the chest roentgenogram. c) In the far advanced pulmonary tuberculosis, lung inhalation scan showed almost similar decrease of radioactivity corresponding to the chest roentgenogram as in the minimal pulmonary tuberculosis. 4. From all these results, it was found that the characteristic finding in pulmonary tuberculosis was a decrease in pulmonary arterial blood flow to the diseased area and in general decrease of pulmonary arterial blood flow to the diseased area was more extensive than had been expected from the chest roentgenogram, especially in the treated group. Lung inhalation scan showed almost similar distribution of radioactivity corresponding to the chest roentgenogram in minimal and far advanced pulmonary tuberculosis, but there was a variability in the moderately advanced pulmonary tuberculosis. The measured values obtained from spirometry were parallel to the tuberculous lesion in chest roentgenogram.

  • PDF

Velocity and Shear Stress Distributions for Steady and Physiological Flows in the Abdominal Aorta/lLIAC Artery Bifurcation (복부대동맥/장골동맥 분기혈관내 정상 및 박동성 유동의 속도와 전단응력분포)

  • 서상호
    • Journal of Biomedical Engineering Research
    • /
    • v.18 no.2
    • /
    • pp.179-186
    • /
    • 1997
  • Steady and physiological flows of a Newtonian fluid and blood in the abdominal gorta/iliac artery bifurcation are numerically simulated to understand the etiology and pathogenesis of atherosclerosis. Distributions of velocity, pressure, and wall shear stress in the bifurcated arterial vessel model are calculated to investigate the differences of flow characteristics between steady and physiological flows and to compare flow characteristics of blood with that of a Newtonian fluid For the given Reynolds number the flow characteristics of physiological flows for a Newtonian fluid and blood in the bifurcated arterial vessel are quite different from thcse of steady flows. No flow separation or flow reversal in the bifurcated region appears downstream of a stenosis during the acceleration phase. However, during the deceleration phase the flow exhibits flow separation in the outer walls of daugtlter branches, which extends to the entire wall region.

  • PDF

3-D Flow Analysis of Blood and Blood Substitutes in a Double Branching Model (이중 분지관내 혈액 및 혈액대용유체의 3차원 유동해석)

  • Suh, Sang-Ho;Yoo, Sang-Sin;Roh, Hyung-Woon
    • Journal of Biomedical Engineering Research
    • /
    • v.18 no.2
    • /
    • pp.187-196
    • /
    • 1997
  • The three-dimensional flow analysis using the finite volume method is presented to compare the steady flow characteristics of blood with those of blood substitutes such as water and aqueous polymer solution in an idealized double branching model. The model is used to simlllate the region of the abdominal aorta near the celiac and superior mesenteric branches. Apparent viscosities of blood and the aqueous Separan solution are represented as a function of shear rate by the Carreau model, Water and aqueoiu Separan AP-273 500wppm solution are frequently used as blood substitutes in vitro experiments. Water is a typical Newtonian fluid and blood and Separan solution are non-Newtonian fluids. Flow phenomena such as velocity distribution, pressure variation and wall shear stress distribution of water, blood and polymer solution are quite different due to differences of the rheological characteristics of fluids. Flow phenomena of polymer solution are qualitatively similar to those of blood but the phenomena of water are quite different from those of blood and polymer solution. It is recommended that a lion-Newtonian fluid which exhibits very similar rheological behavior to blood be used in vitro experiments. A non-Newtonian fluid whose rheological characteristics are very similar to those of blood should be used to obtain the meaninylll hemodynamic data for blood flow in vitro experiment and by numerical analysis

  • PDF

Experimental Investigation on Flow Characteristics of Chicken Blood in a Micro Tube Using a Micro-PIV Technique (마이크로 PIV를 이용한 미세튜브 내부 조류 혈액유동에 관한 실험적 연구)

  • Yeo, Chang-Sub;Ji, Ho-Seong;Lee, Sang-Joon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.11 s.254
    • /
    • pp.1027-1034
    • /
    • 2006
  • In order to investigate flow characteristics of chicken blood in a micro tube of 100$\mu$m in diameter, in-vitro experiments were carried out using a micro-PIV technique. The micro-PIV system consists of a microscope, 2-head Nd:YAG laser, 12 bit cooled CCD camera and a delay generator. Chicken blood with 40% hematocrit was supplied into a micro tube using a syringe pump. The blood flow shows clearly the cell free layer near the tube wall and its thickness is increased with increasing the flow speed. The hemorheological characteristics of chicken blood, including shear rate and shear stress were estimated from the PIV velocity field data obtained. Since the aggregation index of chicken blood is less than 50% of human blood, non-Newtonian flow characteristics of chicken blood are smaller than those of human blood. As the flow rate increases, the degree of flatness in the velocity profile at the center region is decreased and the parabola-shaped shear stress distribution becomes to have a linear profile. Under the same flow rate, chicken blood shows higher shear stress, compared with human blood.

Diffusion-Enhanced Modified Hemodialyzer

  • Lee, Kyung-Soo;Lee, Sa-Ram;Mun, Cho-Hae;Min, Byoung-Goo
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.4
    • /
    • pp.455-460
    • /
    • 2007
  • Flow mismatch between blood and dialysate is invariably encountered during conventional hemodialysis, and this deteriorates diffusive mass transfer. A modification of a conventional dialyzer was conceived to prevent this mismatch. The modified dialyzer includes two independent blood flow regions (central and peripheral regions), which were achieved by redesigning the dialyzer cap. Resultantly, the blood stream was divided into two concentric dialyzer regions. Solutes clearances obtained using the modified dialyzers were compared with those of conventional dialyzers. Solutes clearances by conventional dialyzers were uniform, but solutes clearances by modified dialyzers were found to be dependent on the simulated blood split into dialyzer central and peripheral regions. Maximal clearances using the modified dialyzer were improved by up to approximately 7.6% for urea and 7.3% for creatinine, as compared with those of conventional dialyzers. More optimizations are required for clinical applications, but the finding that blood flowrates through central and peripheral fiber bundles can be easily regulated is encouraging.

Effect of body acceleration on pulsatile flow of Casson fluid through a mild stenosed artery

  • Nagarani, P.;Sarojamma, G.
    • Korea-Australia Rheology Journal
    • /
    • v.20 no.4
    • /
    • pp.189-196
    • /
    • 2008
  • The pulsatile flow of blood through a stenosed artery under the influence of external periodic body acceleration is studied. The effect of non-Newtonian nature of blood in small blood vessels has been taken into account by modeling blood as a Casson fluid. The non-linear coupled equations governing the flow are solved using perturbation analysis assuming that the Womersley frequency parameter is small which is valid for physiological situations in small blood vessels. The effect of pulsatility, stenosis, body acceleration, yield stress of the fluid and pressure gradient on the yield plane locations, velocity distribution, flow rate, shear stress and frictional resistance are investigated. It is noticed that the effect of yield stress and stenosis is to reduce flow rate and increase flow resistance. The impact of body acceleration is to enhance the flow rate and reduces resistance to flow.

A Study on the Concept and Mechanism of 'The Pi Controls the blood(脾統血)' ('비통혈(脾統血)'의 개념(槪念)과 기전(機轉)에 관한 고찰(考察))

  • Kim, Jong-hyun
    • Journal of Korean Medical classics
    • /
    • v.29 no.2
    • /
    • pp.165-176
    • /
    • 2016
  • Objectives : This study was done to investigate the formation process of the 'The Spleen controls the blood(脾統血)' concept, to clarify what this concept means and the mechanism of its physiology. Methods : Contents including 'Controlling blood(統血)' and 'Binding blood(攝血)' were searched and analyzed in medical classics. Previous researches were applied. Results & Conclusions : The concept of 'Controlling blood' could be defined as the control of blood movement. This means that it sends blood to where it's needed, and inhibits flow from where it's excessive. 'The Spleen controls the blood' was not used as a physiologic term in early books like Huangdineijing(黃帝內經). It was first used in the 13C, then widely after the 16C. The mechanism of 'Controlling blood' could be classified as the function of 'Production', 'Distribution', and 'Adjustment' of blood. 'Production' of blood can reduce blood fever(血熱) and blood stasis(瘀血), and prevent bleeding. 'Distribution' of blood can reduce the symptoms raised by lack of blood in the five viscera and body. 'Adjustment' of blood means maintaining homeostasis and stability of the human body. Pi can adjust blood flow and prevent blood from being imbalanced.

A Numerical Analysis on the Curved Bileaflet Mechanical Heart Valve (MHV): Leaflet Motion and Blood Flow in an Elastic Blood Vessel

  • Bang, Jin-Seok;Choi, Choeng-Ryul;Kim, Chang-Nyung
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.9
    • /
    • pp.1761-1772
    • /
    • 2005
  • In blood flow passing through the mechanical heart valve (MHV) and elastic blood vessel, hemolysis and platelet activation causing thrombus formation can be seen owing to the shear stress in the blood. Also, fracture and deformation of leaflets can be observed depending on the shape and material properties of the leaflets which is opened and closed in a cycle. Hence, comprehensive study is needed on the hemodynamics which is associated with the motion of leaflet and elastic blood vessel in terms of fluid-structure interaction. In this paper, a numerical analysis has been performed for a three-dimensional pulsatile blood flow associated with the elastic blood vessel and curved bileaflet for multiple cycles in light of fluid-structure interaction. From this analysis fluttering phenomenon and rebound of the leaflet have been observed and recirculation and regurgitation have been found in the flow fields of the blood. Also, the pressure distribution and the radial displacement of the elastic blood vessel have been obtained. The motion of the leaflet and flow fields of the blood have shown similar tendency compared with the previous experiments carried out in other studies. The present study can contribute to the design methodology for the curved bileaflet mechanical heart valve. Furthermore, the proposed fluid-structure interaction method will be effectively used in various fields where the interaction between fluid flow and structure are involved.

Numerical Study of 3D Unsteady Flow in a Blood Sac of TPLS: Effect of Actuator Speed (TPLS 혈액주머니 내의 3차원 비정상유동에 대한 수치해석 연구: 액추에이터 속도의 영향)

  • Jung G. S.;Seong H. C.;Park M. S.;Ko H. J.;Shim E. B.;Min B. G.;Park C. Y.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.08a
    • /
    • pp.206-211
    • /
    • 2003
  • This paper reports the numerical results for blood flow of the sac squeezed by moving actuator in the TPLS(Twin Pulse Life Support System). Blood flow in the sac is assumed to be 3-dimensional unsteady newtonian fluid. where the blood flow interacts with the sac, which is activated by the moving actuator. The flow field is simulated numerically by using the FEM code, ADINA. It is well known that hemolysis is closely related to shear stress acted on blood flow. According to this fact, we simulate four models with different speed for moving actuator and examine the distribution of shear stress for each model. Numerical results show that maximum shear stress is strongly dependent on the actuator speed.

  • PDF