• Title/Summary/Keyword: block cipher

Search Result 405, Processing Time 0.032 seconds

Dynamic Network: A New Framework for Symmetric Block Cipher Algorithms

  • Park, Seung-Bae;Joo, Nak-Keun;Lim, Hyeong-Seok
    • Proceedings of the IEEK Conference
    • /
    • 2000.07b
    • /
    • pp.743-746
    • /
    • 2000
  • In this paper we propose a new network called Dynamic network for symmetric block ciphers. Dynamic cipher has the property that the key-size, the number of round, and the plaintext-size are scalable simultaneously We present the method for designing secure Dynamic cipher against meet-in-the-middle attack and linear cryptanalysis. Also, we show that the differential cryptanalysis to Dynamic cipher is hard.

  • PDF

Differential Fault Analysis on Symmetry Structured SPN Block Cipher (대칭구조 SPN 블록 암호 알고리즘에 대한 차분 오류 공격)

  • Lee, Chang-Hoon
    • Journal of Advanced Navigation Technology
    • /
    • v.17 no.5
    • /
    • pp.568-573
    • /
    • 2013
  • In this paper, we propose a differential fault analysis on symmetry structured SPN block cipher proposed in 2008. The target algorithm has the SPN structure and a symmetric structure in encryption and decryption process. To recover the 128-bit secret key of the target algorithm, this attack requires only one random byte fault and an exhaustive search of $2^8$. This is the first known cryptanalytic result on the target algorithm.

Analysis of Variants of the Even-Mansour scheme (이븐-맨서 스킴의 변형된 스킴에 관한 분석)

  • Kim, HongTae
    • Convergence Security Journal
    • /
    • v.20 no.1
    • /
    • pp.9-14
    • /
    • 2020
  • There have been many papers on minimalism of cryptography. Secure minimal block cipher is one of these topics and Even and Mansour suggested a simple block cipher. The Even-Mansour scheme is a block cipher with one permutation and two whitening keys. Studying related to the Even-Mansour scheme gives great insight into the security and design of block cipher. There have been suggested many trials to analyze the security of the Even-Mansour scheme and variants of the Even-Mansour scheme. We present a new variant of the Even-Mansour scheme and introduce a variant of the Even-Mansour scheme. We focus on the security of these variants of the Even-Mansour scheme and present variation of the security according to key size. We prove the security of a variant of the Even-Mansour scheme and show that a generalized Even-Mansour scheme is not proper for a minimal block cipher.

DABC: A dynamic ARX-based lightweight block cipher with high diffusion

  • Wen, Chen;Lang, Li;Ying, Guo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.1
    • /
    • pp.165-184
    • /
    • 2023
  • The ARX-based lightweight block cipher is widely used in resource-constrained IoT devices due to fast and simple operation of software and hardware platforms. However, there are three weaknesses to ARX-based lightweight block ciphers. Firstly, only half of the data can be changed in one round. Secondly, traditional ARX-based lightweight block ciphers are static structures, which provide limited security. Thirdly, it has poor diffusion when the initial plaintext and key are all 0 or all 1. This paper proposes a new dynamic ARX-based lightweight block cipher to overcome these weaknesses, called DABC. DABC can change all data in one round, which overcomes the first weakness. This paper combines the key and the generalized two-dimensional cat map to construct a dynamic permutation layer P1, which improves the uncertainty between different rounds of DABC. The non-linear component of the round function alternately uses NAND gate and AND gate to increase the complexity of the attack, which overcomes the third weakness. Meanwhile, this paper proposes the round-based architecture of DABC and conducted ASIC and FPGA implementation. The hardware results show that DABC has less hardware resource and high throughput. Finally, the safety evaluation results show that DABC has a good avalanche effect and security.

A New BISON-like Construction Block Cipher: DBISON

  • Zhao, Haixia;Wei, Yongzhuang;Liu, Zhenghong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.5
    • /
    • pp.1611-1633
    • /
    • 2022
  • At EUROCRYPT 2019, a new block cipher algorithm called BISON was proposed by Canteaut et al. which uses a novel structure named as Whitened Swap-Or-Not (WSN). Unlike the traditional wide trail strategy, the differential and linear properties of this algorithm can be easily determined. However, the encryption speed of the BISON algorithm is quite low due to a large number of iterative rounds needed to ensure certain security margins. Commonly, denoting by n is the data block length, this design requires 3n encryption rounds. Moreover, the block size n of BISON is always odd, which is not convenient for operations performed on a byte level. In order to overcome these issues, we propose a new block cipher, named DBISON, which more efficiently employs the ideas of double layers typical to the BISON-like construction. More precisely, DBISON divides the input into two parts of size n/2 bits and performs the round computations in parallel, which leads to an increased encryption speed. In particular, the data block length n of DBISON can be even, which gives certain additional implementation benefits over BISON. Furthermore, the resistance of DBISON against differential and linear attacks is also investigated. It is shown the maximal differential probability (MDP) is 1/2n-1 for n encryption rounds and that the maximal linear probability (MLP) is strictly less than 1/2n-1 when (n/2+3) iterative encryption rounds are used. These estimates are very close to the ideal values when n is close to 256.

An Efficient Implementation of Lightweight Block Cipher Algorithm HIGHT for IoT Security (사물인터넷 보안용 경량 블록암호 알고리듬 HIGHT의 효율적인 하드웨어 구현)

  • Bae, Gi-Chur;Shin, Kyung-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.285-287
    • /
    • 2014
  • This paper describes a design of area-efficient/low-power cryptographic processor for lightweight block cipher algorithm HIGHT which was approved as a cryptographic standard by KATS and ISO/IEC. The HIGHT algorithm which is suitable for the security of IoT(Internet of Things), encrypts a 64-bit plain text with a 128-bit cipher key to make a 64-bit cipher text, and vice versa. For area-efficient and low-power implementation, we adopt 32-bit data path and optimize round transform block and key scheduler to share hardware resources for encryption and decryption.

  • PDF

An Efficient Hardware Implementation of Block Cipher Algorithm LEA (블록암호 알고리듬 LEA의 효율적인 하드웨어 구현)

  • Sung, Mi-ji;Park, Jang-nyeong;Shin, Kyung-wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.777-779
    • /
    • 2014
  • The LEA(Lightweight Encryption Algorithm) is a 128-bit high-speed/lightweight block cipher algorithm developed by National Security Research Institute(NSRI) in 2012. The LEA encrypts plain text of 128-bit using cipher key of 128/192/256-bit, and produces cipher text of 128-bit, and vice versa. To reduce hardware complexity, we propose an efficient architecture which shares hardware resources for encryption and decryption in round transformation block. Hardware sharing technique for key scheduler was also devised to achieve area-efficient and low-power implementation. The designed LEA cryptographic processor was verified by using FPGA implementation.

  • PDF

Design of Encryption/Decryption Core for Block Cipher HIGHT (블록 암호 HIGHT를 위한 암·복호화기 코어 설계)

  • Sonh, Seung-Il
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.4
    • /
    • pp.778-784
    • /
    • 2012
  • A symmetric block cryptosystem uses an identical cryptographic key at encryption and decryption processes. HIGHT cipher algorithm is 64-bit block cryptographic technology for mobile device that was authorized as international standard by ISO/IEC on 2010. In this paper, block cipher HIGHT algorithm is designed using Verilog-HDL. Four modes of operation for block cipher such as ECB, CBC, OFB and CTR are supported. When continuous message blocks of fixed size are encrypted or decrypted, the desigend HIGHT core can process a 64-bit message block in every 34-clock cycle. The cryptographic processor designed in this paper operates at 144MHz on vertex chip of Xilinx, Inc. and the maximum throughput is 271Mbps. The designed cryptographic processor is applicable to security module of the areas such as PDA, smart card, internet banking and satellite broadcasting.

Software Implementation of Lightweight Block Cipher CHAM for Fast Encryption

  • Kim, Taeung;Hong, Deukjo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.10
    • /
    • pp.111-117
    • /
    • 2018
  • CHAM is a lightweight block cipher, proposed in ICISC 2017. CHAM-n/k has the n-bit block and the k-bit key, and designers recommend CHAM-64/128, CHAM-128/128, and CHAM-128/256. In this paper, we study how to make optimal software implementation of CHAM such that it has high encryption speed on CPUs with high computing power. The best performances of our CHAM implementations are 1.6 cycles/byte for CHAM-64/128, 2.3 cycles/byte for CHAM-128/128, and 3.8 cycles/byte for CHAM-128/256. The comparison with existing software implementation results for well-known block ciphers shows that our results are competitive.

MATHEMATICAL ANALYSIS FOR A DYNAMIC CIPHER

  • JUNG YOON-TAE;CHOI EUN-HEE;RIM KWANG-CHEOL
    • The Pure and Applied Mathematics
    • /
    • v.12 no.2 s.28
    • /
    • pp.143-152
    • /
    • 2005
  • We present a new block cipher called DyC. It consists of four sets (procedures) having the different $2^2,\;2^2,\;2^4$, and $2^8$ one-to-one correspondence functions as the elements. The round key is used to determine exactly one composite function from the possible $2^{16}$ composite functions. DyC supports 8 $\times$ n bit key size, 16 $\times$ m bit block length, and n rounds. We have confirmed that DyC offers security against other well-known advanced cryptanalytic attacks including the slide attacks and interpolation attacks. In this paper, we show several properties of the key schedule of DyC by mathematical analysis.

  • PDF