• Title/Summary/Keyword: blind algorithm

Search Result 467, Processing Time 0.027 seconds

Convergence Characteristics of the Normalized Blind Equalization Algorithm

  • Lee, Gwang-Seok
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.2
    • /
    • pp.136-139
    • /
    • 2010
  • We derived Stop-and-go normalized DD, dual-mode normalized Sato, dual-mode NCMA blind equalization algorithm for complex data in this research. And then, the convergence characteristics of the proposed SG-NDD, dual-mode NSato blind equalization algorithms are compared with those of SG-DD, dual-mode Sato algorithms. In general, the normalized blind equalization algorithms have better convergence characteristics than the conventional algorithms.

A new dual-mode blind equalization algorithm combining carrier phase recovery (반송파 위상 복원을 결합한 새로운 이중모드 블라인드 등화 알고리즘)

  • 오길남;진용옥
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.5
    • /
    • pp.14-23
    • /
    • 1995
  • A new dual-mode algorithm for blind equalization of quadrature amplitude modulation (QAM) signals is proposed. To solve the problem that the constant modulus algorithm (CMA) converges to the constellation with the arbitrary phase rotation, with the modification of the CMA, the proposed algorithm accomplishes blind equalization and carrier phase recovery simultaneously. In addition, the dual-mode algorithm combining the modified constant modulus algorithm (MCMA) with decision-directed (DD) algorithm achieves the performance enhancement of blind convergence speed and steady-state residual ISI. So we can refer the proposed algorithm to as a scheme for joint blind equalization and carrier phase recovery. Simulation results for i.i.d. input signals confirm that the dual-mode algorithm results in faster convergence speed, samller residual ISI, and better carrier phase recovery than those of the CMA and DD algorithm without any significant increase in computational complexity.

  • PDF

A BUSSGANG-TYPE ALGORITHM FOR BLIND SIGNAL SEPARATION

  • Choi, Seung-Jin;Lyu, Young-Ki
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.1191-1194
    • /
    • 1998
  • This paper presents a new computationally efficient adaptive algorithm for blind signal separation, which is able to recover the narrowband source signals in the presence of cochannel interference without a prior knowledge of array manifold. We derive a new blind signal separation algorithm using the Natural gradient 〔1〕from an information-theoretic approach. The resulting algorithm has the Bussgang property which has been widely used in blind equalization 〔12〕. Extensive computer simulation results comfirm the validity and high performance of the proposed algorithm.

  • PDF

LP-Based Blind Adaptive Channel Identification and Equalization with Phase Offset Compensation

  • Ahn, Kyung-Sseung;Baik, Heung-Ki
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.4C
    • /
    • pp.384-391
    • /
    • 2003
  • Blind channel identification and equalization attempt to identify the communication channel and to remove the inter-symbol interference caused by a communication channel without using any known trainning sequences. In this paper, we propose a blind adaptive channel identification and equalization algorithm with phase offset compensation for single-input multiple-output (SIMO) channel. It is based on the one-step forward multichannel linear prediction error method and can be implemented by an RLS algorithm. Phase offset problem, we use a blind adaptive algorithm called the constant modulus derotator (CMD) algorithm based on condtant modulus algorithm (CMA). Moreover, unlike many known subspace (SS) methods or cross relation (CR) methods, our proposed algorithms do not require channel order estimation. Therefore, our algorithms are robust to channel order mismatch.

자력복구 적응 채널등화기를 위한 Run and Go 알고리즘 (Run and Go Algorithm for Blind Equalization)

  • Chung, Won-Zoo
    • Journal of IKEEE
    • /
    • v.10 no.1 s.18
    • /
    • pp.62-68
    • /
    • 2006
  • In this paper, we propose an adaptation strategy for blind equalizers, which combines a blind algorithm based on high order statistics and the decision directed LMS algorithm. In contrast to 'Stop-and-Go' algorithm, where adaptation is stopped for unreliable signals, the proposed algorithm applies high order statistics (HOS) blind algorithm to the unreliable signals and applies DD-LMS for the reliable signals. The proposed algorithm, named 'Run-and-Go' algorithm, inherits minimum MSE performance of DD-LMS and acquisition ability of blind algorithms. Furthermore, by updating the reliable signal region according to signal quality in each iteration, the convergence speed and acquisition ability is further improved.

  • PDF

A Subband Adaptive Blind Equalization Algorithm for FIR MIMO Systems (FIR MIMO 시스템을 위한 부밴드 적응 블라인드 등화 알고리즘)

  • Sohn, Sang-Wook;Lim, Young-Bin;Choi, Hun;Bae, Hyeon-Deok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.2
    • /
    • pp.476-483
    • /
    • 2010
  • If the data are pre-whitened, then gradient adaptive algorithms which are simpler than higher order statistics algorithms can be used in adaptive blind signal estimation. In this paper, we propose a blind subband affine projection algorithm for multiple-input multiple-output adaptive equalization in the blind environments. All of the adaptive filters in subband affine projection equalization are decomposed to polyphase components, and the coefficients of the decomposed adaptive sub-filters are updated by defining the multiple cost functions. An infinite impulse response filter bank is designed for the data pre-whitening. Pre-whitening procedure through subband filtering can speed up the convergence rate of the algorithm without additional computation. Simulation results are presented showing the proposed algorithm's convergence rate, blind equalization and blind signal separation performances.

Multi-Stage Blind Equalization Algorithm (Multi-Stage 자력복구 채널등화 알고리즘)

  • Lee, Joong-Hyun;Hwang, Hu-Mor;Choi, Byung-Wook
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.3135-3137
    • /
    • 1999
  • We propose two robust blind equalization algorithms based on multi-stage clustering blind equalization algorithm, which are called a complex classification update algorithm(CCUA) and an error compensation algorithm(ECA). The first algorithm is a tap-updating algorithm which each computes classified real and imaginary parts in order to reduce computations and the complexity of implementation as a stage increase. The second one is a algorithm which can achieve faster convergence speed because error of equalizer input make always fixed. Test results confirm that the proposed algorithms with faster convergence and lower complexity outperforms both constant modulus algorithm (CMA) and conventional multi-stage blind clustering algorithm(MSA) in reducing the SER as well as the MSE at the equalizer output.

  • PDF

A Frequency-Domain Normalized MBD Algorithm with Unidirectional Filters for Blind Speech Separation

  • Kim Hye-Jin;Nam Seung-Hyon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.2E
    • /
    • pp.54-60
    • /
    • 2005
  • A new multichannel blind deconvolution algorithm is proposed for speech mixtures. It employs unidirectional filters and normalization of gradient terms in the frequency domain. The proposed algorithm is shown to be approximately nonholonomic. Thus it provides improved convergence and separation performances without whitening effect for nonstationary sources such as speech and audio signals. Simulations using real world recordings confirm superior performances over existing algorithms and its usefulness for real applications.

Blind Signal Processing for Impulsive Noise Channels

  • Kim, Nam-Yong;Byun, Hyung-Gi;You, Young-Hwan;Kwon, Ki-Hyeon
    • Journal of Communications and Networks
    • /
    • v.14 no.1
    • /
    • pp.27-33
    • /
    • 2012
  • In this paper, a new blind signal processing scheme for equalization in fading and impulsive-noise channel environments is introduced based on probability density functionmatching method and a set of Dirac-delta functions. Gaussian kernel of the proposed blind algorithm has the effect of cutting out the outliers on the difference between the desired level values and impulse-infected outputs. And also the proposed algorithm has relatively less sensitivity to channel eigenvalue ratio and has reduced computational complexity compared to the recently introduced correntropy algorithm. According to these characteristics, simulation results show that the proposed blind algorithm produces superior performance in multi-path communication channels corrupted with impulsive noise.

Optimization of Blind Adaptive Decorrelating PIC Detector Performance in DS-CDMA System

  • Sirijiamrat, S.;Benjangkaprasert, C.;Sangaroon, O.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1962-1965
    • /
    • 2004
  • In this paper, the new algorithm for blind adaptive decorrelating parallel interference canceller detector in direct-sequence code division multiple access (DS-CDMA) synchronous communication systems is proposed. The goal of this paper is to improve the performance of the blind adaptive decorrelating parallel interference cancellation detector (BAD/PIC). The proposed blind adaptive decorrelating detector is using optimum step-size technique bootstrap algorithm as an initial stage of PIC, which does not require a training sequence. Therefore, this algorithm has a superior view of utilizing bandwidth and reduces the complexity of computation of inversion cross-correlation matrix. The computer simulation results show that the bit error rate performance of the proposed algorithm for the new structure of detector is better than that of the other detectors such as matched filters, the conventional PIC, and the blind adaptive decorrelating PIC detector.

  • PDF