• Title/Summary/Keyword: blended slag

Search Result 161, Processing Time 0.027 seconds

Prediction of Rheological Properties of Cement-Based Pastes Considering the Particle Properties of Binders (결합재의 입자특성을 고려한 시멘트 기반 2성분계 페이스트의 유변특성 예측)

  • Eun-Seok Choi;Jun-Woo Lee;Su-Tae Kang
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.111-119
    • /
    • 2023
  • Recently, a variety of new cement-based materials have been developed, and attempts to predict the properties of these new materials are increasing. In this study, we aimed to predict the rheological properties of binary blended pastes. The cementitious materials used in the study included Portland cement (PC), fly ash (FA), blast furnace slag (BS), and silica fume (SF). The three binder components, fly ash, blast furnace slag, and silica fume, were blended with cement as the foundational composition. We predicted the yield stress and plastic viscosity of the pastes using the YODEL (Yield stress mODEL) and Krieger-Dougherty's equation. The predictive model's performance was validated by comparing it with experimental results obtained using a rheometer. When the rheological properties of the binary blended paste were predicted by reconstructing the properties and parameters used to predict the individual materials, it was evident that the predictions made using the proposed method closely matched the experimental results.

Fundamental properties of Lightweight Foamed Concrete by Applying Different Types of Aggregates and Foam Conduction Ratio (골재종류 및 기포도입율 변화에 따른 경량기포 콘크리트의 기초적 특성)

  • Huang, Jin-Guang;Park, Jae-Yong;Jung, Sang-Woon;Jeung, Kwang-Bok;Han, Min Cheol;Han, Cheon Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.132-133
    • /
    • 2014
  • In this study, high volume of industrial by-products including blast furnace slag, recycled aggregate powder and incineration ash have been utilized on the slurry of the foamed lightweight concrete. As to decrease the price of the lightweight foam concrete, mortar based slurry and concrete based slurry has been fixed. As the variation of the foam conduction ratio and aggregates, the foam ratio and compressive strength has been tested. Results showed that using recycled aggregates in the slurry showed better effect than using natural aggregates due to the alkali properties of the recycled aggregates could activate the potential hydraulic properties of the blast furnace slag. Consider about the low price of the recycled aggregates, it could be identified that using recycled aggregates in high volume blast furnace slag blended lightweight concrete showed better compressive strength than natural aggregates.

  • PDF

Technical and economical feasibility of using GGBS in long-span concrete structures

  • Tang, Kangkang;Millard, Steve;Beattie, Greg
    • Advances in concrete construction
    • /
    • v.3 no.1
    • /
    • pp.1-14
    • /
    • 2015
  • China accounts for nearly half of the global steel production. As a waste material or a by-product in the manufacture process, a large amount of blast furnace slag is generated every year. The majority of recycled blast furnace slag is used as an additive in low-grade blended cement in China (equivalent to the UK CEM II or CEM III depending on the slag content). The cost of using ground granulated blast furnace slag (GGBS) in such low-grade applications may not be entirely reimbursed based on market research. This paper reports an on-going project at Xi'an Jiaotong-Liverpool University (XJTLU) which investigates the feasibility of using GGBS in long-span concrete structures by avoiding/reducing the use of crack control reinforcement. Based on a case study investigation, with up to 50% of CEM I cement replaced with GGBS, a beneficiary effect of reduced thermal contraction is achieved in long-span concrete slabs with no significant detrimental effect on early-age strengths. It is believed that this finding may be transferable from China to other Asian countries with similar climates and economic/environmental concerns.

Influence of Silica Fume on Strength Properties of Alkali-Activated Slag Mortar (실리카 퓸이 알칼리 활성화 슬래그 모르타르의 강도특성에 미치는 영향)

  • Kim, Tae-Wan
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.3
    • /
    • pp.305-312
    • /
    • 2013
  • This paper reports the results of an investigation into the effects of silica fume on strength properties of alkali-activated slag cement (AASC) with water-binder (W/B) ratio and replacement ratio of silica fume content. The W/B ratio varied between 0.50 and 0.60 at a constant increment of 0.05. The silica fume content varied from 0% to 50% by weight of slag. The activators was used sodium hydroxide (NaOH) and the dosage of activator was 3M. The strength development with W/B ratio has been studied at different ages of 1, 3, 7 and 28 days. For mixes of AASC mortars with varying silica fume content, the flow values were lower than the control mixes (without silica fume). The flow value was decrease as the content of silica fume increase. This is because the higher surface areas of silica fume particles increase the water requirement. The analysis of these results indicates that, increasing the silica fume content in AASC mortar also increased the compressive strength. Moreover, the strength decreases with the W/B ratios increases. This is because the particle sizes of silica fume are smaller than slag. The high compressive strength of blended slag-silica fume mortars was due to both the filler effect and the activated reaction of silica fume evidently giving the mortar matrix a denser microstructure, thereby resulting in a significant gain in strength.

Analytical Estimation of the Performance of Marine Concrete with Mineral Admixture (광물질 혼화재를 혼합한 해양 콘크리트의 해석적 성능 평가)

  • Lee, Bang-Yeon;Kwon, Seung-Jun;Kang, Su-Tae
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.4
    • /
    • pp.301-306
    • /
    • 2015
  • For the purpose of developing high performance marine concrete with improved crack resistance and durability, this analytical study aimed to estimate strength, hydration heat characteristics, and chloride attack resistance of concrete with mineral admixture. Ground granulated furnace slag and fly ash were considered for mineral admixture. The replacement of ground granulated furnace slag and fly ash considered in the analysis was in the range of 0~70% and 0~40 %, respectively. The analysis results indicated that both ground granulated furnace slag and fly ash decreased compressive strength, and the effect of adding ground granulated furnace slag on mitigation of hydration heat was limited whereas fly ash had an noticeable influence on it. It was also found that the replacement with ground granulated furnace slag enhanced the chloride attack resistance but fly ash deteriorated the resistance. From the analytical studies, It could be expected that a ternary blended cement composition with proper amount of ground granulated furnace slag and fly ash might be effective to control crack resistance as well as chloride attack resistance of marine concrete.

Fundamental Characteristics of Activated Fly Ash-Slag Cement Exposed to 5℃ Seawater (5℃ 해수에 노출된 알칼리 활성 플라이애시-슬래그 시멘트의 기초 특성)

  • Kim, Taewan;Jun, Yubin
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.4
    • /
    • pp.302-309
    • /
    • 2019
  • This paper shows an experimental study for fundamental characteristics of alkali activated fly ash-slag cement paste exposed to seawater of 5℃. Fly ash and slag were blended in three different ratios; 6:4, 7:3, and 8:2. Activators (NaOH and Na2SiO3) used 5% of the binder weight. It was shown that as the fly ash substitution rate in creased, compressive strength and density decreased, and water absorption rate increased. The results of X-ray diffraction and thermogravimetry showed that hydration reactants formed in samples did not differ significantly, however, C-S-H gel increased as the slag substitution rate increased. It showed that mechanical properties of fly ash-slag cement pastes under 5℃ seawater condition were affected by the slag substitution rate rather than fly ash.

Assessment on the Seawater Attack Resistance of Antiwashout Underwater Concrete (수중불분리성 콘크리트의 해수침식에 대한저항성 평가)

  • 문한영;김성수;안태송;이승태;김종필
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.683-688
    • /
    • 2001
  • In case of constructing the concrete structures under seawater environment, the concrete suffers from deterioration due to penetration of various ions such as chloride, sulfate and magnesium in seawater. Tn the present study, Immersion tests with artificial seawater were carried out to investigate the resistance to seawater attack of antiwashout underwater concrete. From the results of compressive strength, it was found that blended cement concrete due to mineral admixtures such as fly ash(FA) and ground granulated blast-furnace slag(SGC), were superior to ordinary portland cement concrete with respect to the resistance to seawater attack. Moreover, XRD analysis indicated that the formed reactants of ordinary portland cement paste by sulfate and magnesium ions led to the deterioration of concrete. As expected, however, the blended cements with FA or SGC have a good resistance to seawater attack. This paper would discuss the mechanism of seawater deterioration and benefical effects of antiwashout underwater concretes with mineral admixtures.

  • PDF

Study on the Strength Properties of Binary Blended Geopolymer Concrete (2성분계 지오폴리머 콘크리트의 강도특성에 관한 연구)

  • Lee, Seung-Hoon;Park, Min-Su;Kim, Young-Su
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.276-277
    • /
    • 2014
  • Recently, carbon dioxide emissions have increased in succession according to the development of industry. also, cement of construction materials is being increased carbon dioxide during the manufacturing process. it is predicted that amount of carbon dioxide will be produced about 10 % in the world. as a way of solve this problem, it is used to reduce the amount of cement and to replace cement using industrial by-products such as blast furnace slag, fly ash, and red-mud. but, these are not advanced in our country. Thus, the purpose of this study is to analyze the strength property of binary blended geopolymer concrete. So, this study carries out the basic performance test of concrete such as, slump, air content and compressive strength.

  • PDF

A Study on the Rheology Properties of Cement Paste with Variation of Quantity and! Type of Mineral Admixture (광물혼화재의 종류별 함량에 따른 시멘트 페이스트의 유동 특성에 관한 연구)

  • 박춘근;노명현;김학연;이종필;박대효
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.107-113
    • /
    • 2003
  • The rheology properties of cement paste with variation of quantity and type of mineral admixture were investigated. The rheology of the paste was assessed by using a HAAKE Rotovisco(RT 20) rheometer having cylindrical serrate spindle. The results were as follows: The viscosity and the yield stress of cement paste were decreased by the only replacement of 10% BFS(blast furnace slag) or the only replacement of 30% FA(fly ash), whereas SF(silica fume) increased them as the replacement quantity was increased. Increasing the dosage of HRWR(high-range water reducer), the rheology properties were improved significantly in cement paste with the replacement of SF. In addition, rheology properties of two ingredient blended pastes, such as BFS(20%)-SF(5%), FA(20%)-SF(5%), were improved more than those of three ingredient blended paste, BFS(20%)-FA(20%)-SF(5%).

  • PDF

Properties of Compressive Strength of Mortar Based on High-activated Blast Furnace Slag using the Slag by-product as an Activator (슬래그부산물을 자극제로 활용한 고활성 고로슬래그 미분말 모르타르의 압축강도 발현 특성)

  • Lee, Bo-Kyeong;Kim, Gyu-Yong;Koo, Kyung-Mo;Shin, Kyoung-Su
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.1
    • /
    • pp.37-44
    • /
    • 2014
  • Recently, many efforts related to the utilization of industrial by-products have been made to reduce carbon dioxide emissions in the construction industry. Of these various efforts, concrete incorporating ground granulated blast furnace slag (BFS) provides many advantages compared to conventional concrete, such as high long-term compressive strength, improved durability and economic benefits because of its latent hydraulic property, and low compressive strength at early curing age. This paper investigates the compressive strength of high-activated ground granulated blast furnace slag blended mortar with slag by-product S type(SBP-S). The results of the experiment revealed that incorporating high-activated ground granulated blast furnace slag would affect the compressive strength of mortar. It was found that increasing the Blaine fineness and replacement ratio of slag by-product S type shows high compressive strength of mortar at early curing age because of its high $SiO_2$ and CaO contents in the slag. It is confirmed that an increase of curing age does not affect the compressive strength of mortar made with slag by-product S type at a high curing temperature. Moreover, it is possible to develop and design concrete manufactured with high-activated ground granulated blast furnace slag as binder considering the acceleration curing conditions and mix proportions.