• Title/Summary/Keyword: blended film

Search Result 66, Processing Time 0.025 seconds

Biocompatibility of Poly(MPC-co-EHMA)/Poly(L-1actide-co-glycolide) Blends

  • Gilson Khang;Park, Myoung-Kyu;Jong M. Rhee;Lee, Sang-Jin;Lee, Hai-Bang;Yasuhiko Iwasaki;Nobuo Nakabayashi;Kazuhiko Ishihara
    • Macromolecular Research
    • /
    • v.9 no.2
    • /
    • pp.107-115
    • /
    • 2001
  • Poly(L-lactide-co-glycolide)(PLGA) was blended with poly[$\omega$-methacryloyloxyethyl phospho-rylcholine-co-ethylhexylmethacrylate (PMEH)] (PLGA/PMEH) to endow with new functionality i.e., to improve the cell-, tissue- and blood-compatibility. The characteristics of surface properties were investigated by measurement of contact angle goniometer, Fourier-transform infrared spectroscopy with attenuated total reflectance (FTIR-ATR) and electron spectroscopy for chemical analysis (ESCA). NIH/3T3 fibroblast and bovine aortic endothelial cell were cultured on control and PLGA/PMEH surfaces for the evaluation of ceil attachment and proliferation in terms of surface functionality such as the concentration of phosphoryl-choline. Also, the behavior of platelet adhesion on PLGA/PMEH was observed in terms of the surface functionality. The contact angles on control and PLGA/PMEH surfaces decreased with increasing PMEH content from 75$^{\circ}$ to about 43$^{\circ}$. It was observed from the FTIR-ATR spectra that phosphorylcholine groups are gradually increased with increasing blended amount of MPC. The experimental P percent values from ESCA analysis were more 3.28∼7.4 times than that of the theoretical P percent for each blend films. These results clearly indicated that the MPC units were concentrated on the surface of PLGA/PMEH blend. The control and PLGA/PMEH films with 0.5 to 10.0 wt% concentration of PMEH were used to evaluate cell adhesion and growth in terms of phosphorylcholine functionality and wettability. Cell adhesion and growth on PLGA/PMEH surfaces were less active than those of control and both cell number decreased with increasing PMEH contents without the effect of surface wettability. It can be explained that the fibronectin adsorption decreased with an increase in the surface density of phosphorylcholine functional group. One can conclude the amount of the protein adsorption and the adhesion number of cells can be controlled and nonspecifically reduced by the introduction with phosphorylcholine group. Morphology of the adhered platelets on the PLGA/PMEH surface showed lower activating than control and the number of adhered platelets on the PLGA/PMEH sample decreased with increasing the phosphorylcholine contents. The amount of fibrinogen adsorbed on the PLGA/PMEH surface demonstrated that the phospholipid polar group played an important role in reducing protein adsorption on the surface. In conclusion, this surface modification technique might be effectively used PLGA film and scaffolds for controlling the adhesion and growth of cell and tissue, furthermore, blood compatibility of the PLGA was improved by blending of the MPC polymer for the application of tissue engineering fields.

  • PDF

Synthesis of Fluorine Modified Polyurethane and Surface Modification (불소 변성 폴리우레탄의 합성과 표면 개질)

  • Lim, Chul Hwan;Choi, Hee Sung;Noh, Si Tae
    • Applied Chemistry for Engineering
    • /
    • v.10 no.6
    • /
    • pp.913-916
    • /
    • 1999
  • Fluorine modified diisocyanate(FMD) was synthesized from tris(6-isocyanatohexyl)isocyanurate(TIHI) and N-ethyl-N-2-hydroxyethyl-perfluorooctanesulfonamide(HFA). Fluorine modified polyurethane(FMPU) was also synthesized from FMD and poly(tetramethylene) glycol(PTMG). Modified polyurethanes were made by blending FMPU into the polyester type base polyurethane(BPU). Surface and thermal properties of the blended BPU film was measured by contact angle measurement and DSC. As the amounts of FMPU was increased from 0 wt % to 1 wt %, the surface energy was dramatically decreased from 47.82 dyne/cm to 17.64 dyne/cm. But we observed little change of the contact angle with further increase in the amount of the FMPU up to 10 wt %. The data meant that the surface of the blended polyurethanes was hydrophobic due to the surface arrangement of the fluorine containing moiety in FMPU. Phase separation was induced by the incompatibility of FMPU and BPU for the samples having over 5 wt % of FMPU. The thermal analysis data of these samples showed the thermal behavior of the FMPU itself.

  • PDF

Photochromic Properties of Cellulose Derivatives Having Spirobenzopyran Group (스피로벤조피란을 포함하는 셀룰로오스 유도체의 광변색 특성)

  • Xiangdan, Li;Kim, Eun-Kyoung;Lee, Myong-Hoon
    • Polymer(Korea)
    • /
    • v.29 no.1
    • /
    • pp.25-31
    • /
    • 2005
  • Cellulose acetate derivatives containing 6-(p-hexyloxyphenyl)carbonyl spirobenzopyran (CA-COSP) were prepared from base-catalyzed etherification of cellulose acetate, and their physical and photochromic properties were characterized. The degree of substitution of COSP was calculated from the amount of residual hydroxyl groups in cellulose acetate measured by the $^1H$-NMR and UV spectrometric data. It was ranging from 0.87 to 45.5% depending on the reaction condition. UV/vis spectrometry of the resulting CA-COSP revealed that the polymer shows a reversible color change by changing its color from colorless to blue upon UV irradiation forming a merocyanine structure, and returning back again to colorless spiropyran structure by visible light or by heat. The rate of color change was faster in solution than in the film. In the more polar solvent, the more stable was the resulting merocyanine, and the slower was the rate of reverse reaction to spiropyran. Compared to COSP blended with cellulose acetate, in which a phase separation was observed for samples containing more than 0.9 wt% of COSP, up to 48 wt% of COSP could be blended in CA-COSP without phase separation.

Adhesion Performance of Natural Rubber-based Pressure-Sensitive Adhesives for Protecting of Opto-functionalized Sheet (광기능성시트 보호용 천연고무계 점착제의 점착 물성)

  • Park, Young-Jun;Lim, Dong-Hyuk;Kim, Hyun-Joong;Song, Hyun-Suk;Kwon, Hyuk-Jin
    • Journal of Adhesion and Interface
    • /
    • v.8 no.2
    • /
    • pp.15-21
    • /
    • 2007
  • To prepare a natural rubber-based pressure-sensitive adhesive (PSA) for protection film of opto- functionalized sheet, natural rubber (NR) was blended with a DCPD type tackifier and three types of aliphatic hydrocarbon resins, respectively. Also, to supply low cohesion strength of NR, in the fixed ratio of tackifier, synthetic rubber, styrene-isoprene-styrene (SIS) block copolymer was blended with NR as a function of SIS contents. PSA performance of prepared PSAs was evaluated using probe tack and peel strength. Probe tack of NR/tackifier blends was increased with increasing tackifier contents, and showed maximum peak. In addition, probe tack of NR/tackifier blends slightly increased with increasing softening point of aliphatic hydrocarbon resins. Their peel strength increased up to 50 wt% of tackifier contents, but in the over contents of tackifier, they showed stick-slip failure mode. Finally, probe tack of NR/SIS/tackifier blends showed the maximum values at 20~40 wt% of tackifier contents, but at 20 wt% of tackifier contents, they showed fibrillation. For this reason, peel strength showed maximum values at 40 wt% of tackifier contents.

  • PDF

Characteristics of Bio-filter Support Media for the Odor Control (악취가스 제어를 위한 Bio-filter 담체의 특성 비교)

  • Lee, Hye-Sung;Chu, Duk-Sung;Jung, Joon-Oh
    • Journal of Environmental Health Sciences
    • /
    • v.34 no.1
    • /
    • pp.101-107
    • /
    • 2008
  • Bio-filtration utilizes microorganisms fixed to a porous medium to metabolize pollutants present in an air stream. The microorganisms grow in a bio-film on the surface of a medium or are suspended in the water phase surrounding the medium particles. Therefore, bio-filter support media play one of the most important key roles in bio-filtration of gas phase pollutants. To characterize and select the appropriate support media, gas adsorption capacity and microorganism immobilization were investigated in lab-scale experiments for the selected target support media which were compost I (compost from lab-scale process), compost II (compost from municipal facility), bark, wood chip, orchid stone and vermiculite. As odor materials, ammonia and trimethylamine were utilized. From the result of experiments, bark was superior to any other support media tested in adsorption capacity as much as 12.5 mg ammonia per 1 g bark. In trimethylamine adsorption, bark and wood chip showed a remarkable results of 21.1 and 14.1 mg/g respectively. On the other hand, microorganism fixation test determined by the count of nitrogen oxidizing microbes population, the compost II and wood chips showed the best results. Considering the characteristics of materials and the operating condition of the bio-filter, bark, wood chip, and compost II are applicable to the support media of bio-filter when they are appropriately blended on the basis of studying the media pH, packing porosity and moisture contents.

High-Mobility Ambipolar Polymer Semiconductors by Incorporation of Ionic Additives for Organic Field-Effect Transistors and Printed Electronic Circuits (이온성 첨가제 도입을 통한 고이동도 고분자 반도체 특성 구현과 유기전계효과트랜지스터 및 유연전자회로 응용 연구)

  • Lee, Dong-Hyeon;Moon, Ji-Hoon;Park, Jun-Gu;Jung, Ji Yun;Cho, Il-Young;Kim, Dong Eun;Baeg, Kang-Jun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.3
    • /
    • pp.129-134
    • /
    • 2018
  • Herein, we report the manufacture of high-performance, ambipolar organic field-effect transistors (OFETs) and complementary-like electronic circuitry based on a blended, polymeric, semiconducting film. Relatively high and well-balanced electron and hole mobilities were achieved by incorporating a small amount of ionic additives. The equivalent P-channel and N-channel properties of the ambipolar OFETs enabled the manufacture of complementary-like inverter circuits with a near-ideal switching point, high gain, and good noise margins, via a simple blanket spin-coating process with no additional patterning of each active P-type and N-type semiconductor layer.

Synthesis and Characteristics of Organic Soluble Polyaniline by Emulsion Polymerization (유화 중합법에 의한 유기 용매 가용형 폴리아닐린의 합성 및 그 특성)

  • 김진열;권시중;한성원;김응렬
    • Polymer(Korea)
    • /
    • v.27 no.6
    • /
    • pp.549-554
    • /
    • 2003
  • Emeraldine salt of polyaniline-dodecylbenzenesulfdnic acid (PANI-DBSA) in organic solvents such as toluene and xylene was obtained by a direct one-step emulsion polymerization technique. When the molar ratio of DBSA to aniline monomer was 1.5:1, its solubility and electric property showed a maximum value and then the solid contents of PANI-DBSA was 8 wt% in toluene. The cast film of PANI-DBSA with no binder was obtained on glass or plastic substrates under ambient conditions. PANI solution can be also easily blended with polyurethane and polystyrene polymers in toluene. Improved electrical performance up to 5 S/cm was achieved with good light-transmittance up to 70% at 500 m thickness. They also showed more homogeneous morphology than that prepared with PANI-DBSA kom aqueous dispersion polymerization. The partially dispersed PANI-DBSA showed particles sizes of 50-400 m in organic solvents and their XRD pattern were observed from the powder sample.

Studies on NBR/PVC polymer blend (part 2) (NBR/PVC의 polymer blend에 관(關)한 연구(硏究)(제2보(第2報)))

  • Huh, Dong-Sub;Lee, Jung-Keun
    • Elastomers and Composites
    • /
    • v.6 no.1
    • /
    • pp.71-81
    • /
    • 1971
  • The intention of this study is to investigate the properties of polymer blend, NBR/PVC vulcanizates and blending procedures such as roll-mixing temperatures and sequences for polymer blending of NBR and PVC(resin type). The results obtained are as follows: 1. The roll temperature applied for polymer blending is around $150^{\circ}C$. At this temperature region, the degradation of rubber stock, which may be caused by heat, can be minimized and mill processing in practical application in industries can also be facilitated. 2. It is obviously necessary that a small amount of plasticizers should be added to the stock for improving processibility of roll mixing and physical properties. 3. On roll-mixing sequence, it is more effective that PVC compounded with plasticizer is added to NBR milled on hot roll. 4. The vulcanizates of the blends with different degree of polymerization of PVC ale similar to one another in properties. 5. NBR/PVC(70/30) blends shows the better physical characters than eve,-made foreign latex blend except abrasion-resistance. 6. As PVC addition ratio is increased, the physical properties such as resistance to ozone, tear, heat and oil and tensile strength, modulus, hardness have also improved, on the other hand, tension set and rebound character decreased. 7. The curve of ultimate elongation have point of inflection at the ratio of $30\sim40$ part of PVC. 8. While CR is blended, the physical properties such as brittle point, rebound and resistance to oil in high temperature have improved. 9. Polymer blend of NBR and domestic PVC is applied for the industrial utility such as rubber sole and heel, electric wire cover and oil-resistant packing, coating and gasket, printing roll, film for food packing etc.

  • PDF

Homopolymer Distribution in Polystyrene - Poly(methyl methacrylate) Diblock Copolymer (폴리스티렌-폴리(메틸 메타크릴레이트) 이종 블록 공중합체 내의 단일중합체 분포)

  • Hong, Sung-Ho;Lee, Eun-Ji;Song, Kwon-Bin;Lee, Kwang-Hee
    • Polymer(Korea)
    • /
    • v.35 no.6
    • /
    • pp.531-536
    • /
    • 2011
  • Homopolymer distribution in block copolymer/homopolymer blends was investigated as a function of homopolymer concentration and homopolymer molecular weight. The deuterated poly(methyl methacrylate) or polystyrene was blended with a deuterated polystyrene-poly(methyl methacrylate) diblock copolymer up to a concentration of 20 wt%. Samples were characterized by small-angle X-ray scattering (SAXS), neutron reflectivity and transmission electron microscopy. The block copolymer with a thin-film geometry formed alternating lamellar microdomains oriented parallel to the substrate surface. By adding the homopolymer, the microdomain structure was significantly disturbed. As a consequence, a poorly ordered morphology appeared when the homopolymer concentration exceeded 15 wt%. Increasing the homopolymer concentration and/or the homopolymer molecular weight caused the microdomains to swell less uniformly, resulting in segregation of the homopolymer toward the middle of the microdomains.

Influence of Polymer Morphology and Dispersibility on Mechanical Properties and Electrical Conductivity of Solution-cast PANI-DBSA/HIPS Blends (용액 캐스팅으로 제조한 PANI-DBSA/HIPS 블렌드에서 분산성 및 모폴로지가 기계적 특성과 전기전도도에 미치는 영향)

  • Lee, Jong-Hyeok;Choi, Sun-Woong;Kim, Eun-Ok
    • Polymer(Korea)
    • /
    • v.35 no.6
    • /
    • pp.543-547
    • /
    • 2011
  • A study has been done to enhance the mechanical properties and processability of electrically conductive polyaniline(PANI) without the polymer's structural alternation. Functionalized acid doped PANI (PANI-DBSA) was prepared by an emulsion polymerization, and dodecylbenzenesulfonic acid (DBSA) played both roles of surfactant and dopant. Also, PANI-DBSA was solution cast blended with high impact polystyrene (HIPS) to produce PANI-DBSA/HIPS blend film. The structure and electrical properties of the conducting polymer blends were observed through UV-vis and FTIR/ATR spectroscopy. A study of the blend was carried by focusing on observation of mechanical and electrical properties based on dispersibility and changes in polymer morphology. The conductivity of the blends was increased by increasing the content of PANI-DBSA, and the sudden increase of conductivity to $3.5{\times}10^{-4}$ S/cm was observed even under a low content of 9 wt%. There was a strong association of continuous network formation with percolation and conductivity in the conducting polymer blends.