• 제목/요약/키워드: blasting excavation

검색결과 205건 처리시간 0.074초

A Study on the Determination of Optimal Section for the Subway Tunnels (지하철 터널 최적단면 결정에 관한 연구)

  • 김경호
    • Explosives and Blasting
    • /
    • 제14권2호
    • /
    • pp.63-70
    • /
    • 1996
  • This paper describes the method used to determine the optimal section for the horseshoe shaped single tunnel which is utitized widely in constructing subway tunnels. Vehicle and structural gauges conform to the design criteria for the Seoul Subway Line 5. The tunnel sections are determined considering the structural stability, and the tunnel excavation area is optimized so as to minimize design and construction costs.

  • PDF

Stability analysis of infinite rock slopes with varying disturbances based on the Hoek-Brown failure criterion

  • Dowon Park
    • Geomechanics and Engineering
    • /
    • 제33권1호
    • /
    • pp.53-63
    • /
    • 2023
  • Rock disturbance caused by blasting and stress relaxation is commonly observed during excavation. As the distance from the source of disturbance increases, the degree of disturbance decreases, and rock at a large depth does not experience disturbance. However, in stability analyses, a single value of disturbance is often applied to the entire rock mass, which leads to underestimated results. In this study, this modeling mistake is addressed by considering realistically varying rock disturbance. The safety of infinite slopes in a disturbed rock mass with a strength governed by the Hoek-Brown failure criterion is investigated based on the kinematic approach of limit analysis. The maximum disturbance is assigned to the outermost slope face because it is directly exposed to blasting damage and dilation, and the disturbance progressively decays with distance in the rock mass. The safety analysis results indicate that the assumption of uniform disturbance in the entire rock mass leads to underestimation of the rock strength and safety on infinite rock slopes. A critical slip surface appears to be within the disturbed rock layer as well as the interface between the disturbed upper rock and undisturbed lower rock.

Numerical Analysis on Effect of Stemming Condition in Mine Ventilation Shaft Blasting (광산 통기수갱발파에서 전색조건이 발파효율에 미치는 영향에 관한 수치해석적 연구)

  • Kim, Jun-ha;Kim, Jung-gyu;Jung, Seung-won;Ko, Young-hun;Baluch, Khaqan;Kim, Jong-gwan
    • Explosives and Blasting
    • /
    • 제39권3호
    • /
    • pp.15-23
    • /
    • 2021
  • Ventilation shafts are pathways in mines and tunnels for the removal of dust or smoke during underground space construction and operation. In mines, blasting with long blast holes is preferred for the excavation of a ventilation shaft in the 10~20m long crown pillar section. In this case, the bottom part of the blast hole is completely drilled in order to determine the drilling error, and this causes a problem of lowering the explosive charge and blasting efficiency. It is possible to solve the problem of explosive loading and to increase the blast efficiency by covering the curb of the blasthole by using stemming material. In this study, simulations for the blasting of a ventilation shaft were performed with various stemming lengths and the blasthole diameters(45, 76mm) using AUTODYN 2D SPH(Smooth particle hydrodynamics) analysis technique. Also the optimal bottom stemming column was derived by checking the size of the boulder and burden line according to blasting. Analysis result, blasting efficiency is lessened in case of stemming length less than 30cm and the optimal length of the stemming material should be 30cm or higher to achieve high efficiency of blasting.

A study on pilot Test of the Composition Presplitting Angle Cut method in tunnel blasting (터널 심발부의 선균열을 이용한 발파공법의 현장시험에 관한 연구)

  • Hwang, Hak;Lee, Tai Ro
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • 제4권4호
    • /
    • pp.287-300
    • /
    • 2002
  • Composition Presplitting Angle Cut (COPA-Cut) is a newly developed blasting method for tunnel excavation. Contrary to existing methods, COPA-Cut first creates presplitting by tension crack in cut. In this study, field tests measuring the advance efficiency, noise and ground vibration were performed in order to verify the presplitting effect. To compare the economy and workability, tests were simultaneously performed by COPA-Cut and existing method on the same condition. Results show that COPA-Cut increased advance efficiency and decreased noise and ground vibration. Also, it was confirmed that COPA-Cut is superior to existing method in terms of economy, workability and quality control.

  • PDF

Non-electric Detonator Initiation System Using Spark Trigger (스파크 트리거에 의한 비전기식 뇌관의 기폭 시스템)

  • Yu, Seon-Jin;Kang, Dae-Jin;Kim, Nam-Soo;Jang, Hyong-Doo;Yang, Hyung-Sik
    • Explosives and Blasting
    • /
    • 제29권1호
    • /
    • pp.48-52
    • /
    • 2011
  • Non-electric detonator has been used in underground excavations because of its strong resistance against electric impacts. However, electric detonator is often used to initiate the non-electric detonator instead of using an exclusive non-electric blasting machine due to economical reason. Spark Trigger is introduced as a solution of unexpected explosive hazard from using an electric detonator as an initiator of non-electric system. Since Spark Trigger System does not need expensive tube and no plastic waste is left, this system is proved to be more economical and eco-friendly initiate system than the standard non-electric initiating system.

A Study on the Excavation Method Near Fish Farms and Livestock (양만장 및 가축사육시설 인접지역 암굴착공법 검토에 관한 연구)

  • Lim, Dae-Kyu;Shin, Young-Cheol;Jun, Yang-Bae
    • Explosives and Blasting
    • /
    • 제31권1호
    • /
    • pp.23-32
    • /
    • 2013
  • Construction vibration such as explosive blast, hydraulic breaker, vibratory roller, pile driving noise and so on, injuries in areas around the construction sites. In particular, underwater sound caused by ground vibration is propagation such as structure borne noise. Vibration and underwater sound due to construction activities may cause injury to river, sea or land fish farms near construction sites. The purpose of present study is to measure the sound pressure level and frequency analysis of the underwater noise generated by ground vibration(Blasting, hydraulic crawler drill, hydraulic breaker, vibratory roller). Underwater noise were monitoring by a hydrophone (TC 4013) and recorded, analysis were made using a by software (Prosig).

A study on the utilization of abrasive waterjet for mechanical excavation of hard rock in vertical shaft construction (고강도 암반에서 수직구 기계굴착을 위한 연마재 워터젯 활용에 관한 연구)

  • Seon-Ah Jo;Ju-Hwan Jung;Hee-Hwan Ryu;Jun-Sik Park;Tae-Min Oh
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • 제25권5호
    • /
    • pp.357-371
    • /
    • 2023
  • In cable tunnel construction using TBM, the vertical shaft is an essential structure for entrance and exit of TBM equipment and power lines. Since a shaft penetrates the ground vertically, it often encounters rock mass. Blasting or rock splitting methods, which are mainly used to the rock excavation, cause public complaints due to the noise, vibration and road occupation. Therefore, mechanical excavation using vertical shaft excavation machine are considered as an alternative to the conventional methods. However, at the current level of technology, the vertical excavation machine has limitation in its performance when applied for high strength rock with a compressive strength of more than 120 MPa. In this study, the potential utilization of waterjet technology as an excavation assistance method was investigated to improve mechanical excavation performance in the hard rock formations. Rock cutting experiments were conducted to verify the cutting performance of the abrasive waterjet. Based on the experimental result, it was found that ensuring excavation performance with respect to changing in ground conditions can be achieved by adjusting waterjet parameters such as standoff distance, traverse speed and water pressure. In addition, based on the relationship between excavation performance, uniaxial compressive strength and RQD, it was suggested that excavation performance could be improved by artificially creating joints using the abrasive waterjet. It is expected that these research results can be utilized as fundamental data for the introduction of vertical shaft excavation machines in the future.

Hauling time prediction of the muck generated by a blasting around a tunnel (터널 주변 폭발로 인해 발생된 버력의 처리시간 예측)

  • You, Kwang-Ho;Son, Myung-Kyun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • 제15권1호
    • /
    • pp.33-47
    • /
    • 2013
  • When a bomb explodes near a tunnel, generated muck should be quickly moved outside for rehabilitation of the tunnel. In this study, the amount of muck generated by an explosion was estimated and a methodology was presented for the prediction of the muck hauling time. To this end, 3D-meshes were made by using SoildWorks and blasting analyses were performed by using AUTODYN. A method was suggested to calculate theoretically the amount of muck which inflows into a tunnel based on the relationship between the tunnel and the fragmentation zone obtained from the analysis results. Also, muck hauling times were predicted based on the selection of construction equipment and the results were compared and analyzed. As a result, it was convinced that the amount of muck flowing into the tunnel could be effectively calculated by classifying the relationship between a tunnel and the fragmentation zone into 4 cases and using the mensuration by parts. Also it was confirmed that the closer blasting location is to the portal and the excavation surface of a tunnel, and the more blasting location deviates from the center line of the tunnel, the lesser amount of muck occurs and thus the muck hauling time decreases as well.

A Study on the Vibration Propagation Characteristics of Controlled Blasting Methods and Explosives in Tunnelling (터널 제어발파 공법 및 화약류의 진동전달 특성에 관한 연구)

  • Jung, Hyuksang;Jung, Kyoungsik;Mun, Hongnyeon;Chun, Byungsik;Park, Duhee
    • Journal of the Korean GEO-environmental Society
    • /
    • 제12권2호
    • /
    • pp.5-14
    • /
    • 2011
  • The most common problem encountered in domestic tunnel construction sites are solving public resentments caused by damage to adjacent structures and buildings. The most effective excavation method in rock tunnelling is the drilling and blasting, which is the main cause of vibration resulting in the public resentments. In this study, numerical analysis is conducted to compare the vibration reduction effect of line drilling and pre-splitting methods. Furthermore, the numerical simulations are verified and the results are quantified. Finally, various combinations of explosives used in controlled blasting are used and the vibration reduction effects are evaluated, thereby proving the applicability of the controlled blasting for reduction of vibration in tunnelling.

The Effects of Blasting Vibrations on the Stability of Structure by Excavation around Shaft (수갱 인접 암반 굴착시 발파진동이 구조물의 안정에 미치는 영향)

  • 김형도;임한욱;이태노
    • Tunnel and Underground Space
    • /
    • 제7권3호
    • /
    • pp.208-220
    • /
    • 1997
  • To asses the stability of structure around shaft during the excavation of -300 ml hopper room at 2nd shaft in Jangsung mine, some measurements were made with blast monitoring, stressmeter, extensometer and inclinometers. Instrumentations proved to be reliable and data were montiored over six month period. Stressmeters were set at the points of wall and arch of inset gang(level). Induced stresses were measured with the magnitude of 2.81 kgf/$\textrm{cm}^2$(tensile stress) and -4.45kgf/$\textrm{cm}^2$(compressive stress) respectively. These values were converged after two months. The magnitude of axial force in rock bolt was measured with 1.98 ton between the points of M2(2.25m) and M3(1.5 m) but this value was assumed within allowable level. Maximum displacement was also measured with 2 mm at the dephs of 12m from surface. But this value belongs within guide level.

  • PDF