• Title/Summary/Keyword: blasting design

Search Result 233, Processing Time 0.03 seconds

Mechanical Etching of Micro Pocket by Powder Blasting (Powder Blasting에 의한 미세 포켓의 기계적 에칭)

  • Park, Kyoung-Ho;Oh, Young-Tak;Park, Dong-Sam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.1
    • /
    • pp.219-226
    • /
    • 2002
  • The mechanical etching technique has recently been developed to a powder blasting technique for various materials, capable of producing micro structures larger than 100$\mu$ m. This paper describes the performance of powder blasting technique in micro-pocketing of stainless steel and the effect of the number of nozzle scanning and the nozzle height on the depth and width of pockets. Experimental results showed that increasing the no. of nozzle scanning and decreasing the nozzle height resulted in the increase of depth and width in pockets. Increase of width results from wear of mask film.

Validity of the Attenuation Equation of MOCT Guide Line for Surface Rock Blasting (암발파 잠정지침 발파진동 추정식의 타당성)

  • Choi Mi-Jin;Yang Hyung-Sik
    • Tunnel and Underground Space
    • /
    • v.16 no.2 s.61
    • /
    • pp.189-193
    • /
    • 2006
  • Guide line for rock blasting design of the MOCT(Ministry of Construction and Transportation) adopts attenuation equation of du Pont company for blasting vibration. In this paper the validity of the equation is studied by comparing with several equations of Dowding, Devine and author's induced from the domestic vibration data. The equation is inadequately used and predicted values are proved to be underestimated and causes vibration problems.

Review of the Application of Artificial Intelligence in Blasting Area (발파 분야에서의 인공지능 활용 현황)

  • Kim, Minju;Ismail, L.A.;Kwon, Sangki
    • Explosives and Blasting
    • /
    • v.39 no.3
    • /
    • pp.44-64
    • /
    • 2021
  • With the upcoming 4th industrial revolution era, the applications of artificial intelligence(AI) and big data in engineering are increasing. In the field of blasting, there have been various reported cases of the application of AI. In this paper, AI techniques, such as artificial neural network, fuzzy logic, generic algorithm, swarm intelligence, and support vector machine, which are widely applied in blasting area, are introduced, The studies about the application of AI for the prediction of ground vibration, rock fragmentation, fly rock, air overpressure, and back break are surveyed and summarized. It is for providing starting points for the discussion of active application of AI on effective and safe blasting design, enhancing blasting performance, and minimizing the environmental impact due to blasting.

A Study on the effective Oscillation Characteristics of the Constructions of Blasting Operations in Seaside (수중 발파시 인근 구조물에 미치는 진동의 영향 연구)

  • Lee, Sin;Kang, Dae-Woo;Park, Hak-Bong
    • Explosives and Blasting
    • /
    • v.19 no.1
    • /
    • pp.71-84
    • /
    • 2001
  • Korean peninsula has the most mountainous areas such as mountains and hilly country, and it is surrounded by the sea on all sides but one. In this respect, a large scaled construction works have frequently been conducted. However, it is not easy to porform a large scale blasting work without giving any harm to houses or facilities nationwide. Therefore, blasting work becomes more closely related to maintenance thing due to the development of the downtown or a large structure for key facilities. Many researches on blast in the open space and tunnel blasting have been conducted. On the contrary, research on underwater blasting operations is comparatively scanty even though much more necessity of marine development is required. In this respect, this study aims to investigate the characteristics of underwater blasting operations and to make a comparative study with blast in the open space. As a result of examining into the characteristics during underwater blasting operations, the around oscillation in case of underwater blasting operations shows significantly low compared to that in case of blast in the open space, and this means that much more cautious altitude must be taken in designing underwater blasting operations compared to the design of blast In the open space. As a result of analysis on the difference between a square root and a cube root In the equation of estimating oscillations in the actual site, it is shown that it is shown to apply a square root for the estimation of oscillation at 60 meters in case of underwater blasting operations and at 22 meters case of general blast in the open space.

  • PDF

Conceptual Design of a Work Support Robot for the Prevention of Musculoskeletal Disorders in Shipbuilding (근골격계 질환 예방을 위한 조선용 작업 지원 로봇의 개념 설계)

  • Roh, Myung-Il;Lee, Kyu-Yeul;Lee, Jung-Woo;Lee, Jae-Seung
    • Korean Journal of Computational Design and Engineering
    • /
    • v.14 no.2
    • /
    • pp.77-86
    • /
    • 2009
  • During manual work in shipbuilding such as blasting, grinding, and so on, a large force is acted on the body of a worker. As a result, this work induces musculoskeletal disorders of the worker and it also induces severe social problems. To solve this problem, we are developing a work support robot for the prevention of musculoskeletal disorders in shipbuilding. In this study, a result of conceptual design of this robot is presented. A worker can perform the blasting work with a small force using this robot which can lessen the force acting on the body of the worker.

Analysis on the Characteristics of Rock Blasting-induced Vibration Based on the Analysis of Test Blasting Measurement Data (시험발파 계측자료 분석을 통한 암석 발파진동 특성 분석)

  • Son, Moorak;Ryu, Jaeha;Ahn, Sungsoo;Hwang, Youngcheol;Park, Duhee;Moon, Duhyeong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.9
    • /
    • pp.23-32
    • /
    • 2015
  • This study examined blast testing measurement data which had been obtained from 97 field sites in Korea to investigate the comprehensive characteristics of rock blasting-induced vibration focusing on the effect of excavation types (tunnel, bench) and rock types. The measurement data was from the testing sites mostly in Kangwon province and Kyungsang province and rock types were granite, gneiss, limestone, sand stone, and shale in the order of number of data. The study indicated that the blasting-induced vibration velocity was affected by the excavation types (tunnel, bench) and bench blasting induced higher velocity than tunnel blasting. In addition, the vibration velocity was also highly affected by the rock types and therefore, it can be concluded that rock types should be considered in the future to estimate a blasting-induced vibration velocity. Furthermore, the pre-existing criteria was compared with the results of this study and the comparison indicated that there was a discernable difference except for tunnel blasting results based on the square root scaling and therefore, further studies and interests, which include the effects of rock strength, joint characteristics, geological formation, excavation type, power type, measurement equipment and method, might be necessarily in relation to the estimation of blasting-induced vibration velocity in rock mass.

Prediction and Determination of Correction Coefficients for Blast Vibration Based on AI (AI 기반의 발파진동 계수 예측 및 보정계수 산정에 관한 연구)

  • Kwang-Ho You;Myung-Kyu Song;Hyun-Koo Lee;Nam-Jung Kim
    • Explosives and Blasting
    • /
    • v.41 no.3
    • /
    • pp.26-37
    • /
    • 2023
  • In order to determine the amount of explosives that can minimize the vibration generated during tunnel construction using the blasting method, it is necessary to derive the blasting vibration coefficients, K and n, by analyzing the vibration records of trial blasting in the field or under similar conditions. In this study, we aimed to develop a technique that can derive reasonable K and n when trial blasting cannot be performed. To this end, we collected full-scale trial blast data and studied how to predict the blast vibration coefficient (K, n) according to the type of explosive, center cut blasting method, rock origin and type, and rock grade using deep learning (DL). In addition, the correction value between full-scale and borehole trial blasting results was calculated to compensate for the limitations of the borehole trial blasting results and to carry out a design that aligns more closely with reality. In this study, when comparing the available explosive amount according to the borehole trial blasting result equation, the predictions from deep learning (DL) exceed 50%, and the result with the correction value is similar to other blast vibration estimation equations or about 20% more, enabling more economical design.

A Study on Optimized Blasting Pressure Considering Damage Zone for Railway Tunnel (손상영역을 고려한 철도터널의 최적의 발파압력 선정에 관한 연구)

  • Park, Jong-Ho;Um, Ki-Yung;Cho, Kook-Hwan
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1162-1170
    • /
    • 2011
  • Since there is 70% of the land in South Korea is forest, tunnel constructions by blasting are common for building railways and roads. The damage to the bedrock and the development of overbreak near the face of the tunnel during the blasting directly affect the safety of the tunnel and the maintenance after the construction. Therefore, there is a need to investigate the damage zone in the bedrock after the blasting. The damage zone changes the properties of the bedrock and decreases the safety. Especially, the coefficient of permeability of the damaged bedrock increases dramatically, which is considered very important in construction. There is a lack of research on the damage that bedrock is received with respect to the amount of explosives in blasting, which is required for the design of optimum support in blast excavation that maximizes the support of the bedrock. Therefore, in this research, numerical analysis was performed based on the field experiment data in order to understand the mechanical characteristics of the bedrock after to the blast load and to analyze the damage that the bedrock receives from the blast load. In addition, a method was proposed for selecting the optimum blast pressure for train tunnel design with respect to the damage zone.

  • PDF

Effects of Input Parameters in Numerical Modelling of Dynamic Ground Motion under Blasting Impact (발파하중을 받는 지반의 동적 거동 수치 모델링에서 입력변수의 영향)

  • Ryu, Chang-Ha;Choi, Byung-Hee;Jang, Hyung-Su;Kang, Myoung-Soo
    • Tunnel and Underground Space
    • /
    • v.25 no.3
    • /
    • pp.255-263
    • /
    • 2015
  • Explosive blasting is a very useful tool for mining and civil engineering applications. It, however, may cause severe environmental hazards on adjacent structures due to blasting impact. Blast engineers try to make optimum blast design to provide efficient performance and to minimize the environmental impact as well. It requires a pre-assessment of the impacts resulting from the blasting operation in design stage. One of the common procedures is to evaluate the proposed blast pattern through a series of test blasting in the field. Another approach is to evaluate the possible environmental effects using the numerical methods. There are a number of input parameters to be prepared for the numerical analysis. Some of them are well understood, while some are not. This paper presents some results of sensitivity analysis of the basic input parameters in numerical modelling of blasting problems so as to provide sound understanding of the parameters and some guidelines for input preparation.

Vibration Prediction and Charge Estimation in Hard Rock Blasting Site (경암층 발파현장에서 진동예측 및 장약량산정)

  • Park, Yeon-Soo;Park, Sun-Joon;Choi, Sun-Min;Mun, Soo-Bong;Mun, Byeong-Ok;Jeong, Gyung-Yul;Jeong, Tae-Hyeong;Hwang, Seung-Ill;Kim, Min-Jung;Park, Sang-Chul;Kim, Jung-Ju;Lee, Byeong-Geun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.3
    • /
    • pp.313-319
    • /
    • 2009
  • The blasting has a lot of economic efficiency and speediness but it can damage to a neighbor structure, a domestic animal and a cultured fish due to the blasting vibration, then the public grievance is increased. Therefore, we need to manage the blasting vibration efficiently. The prediction of the correct vibration velocity is not easy because there are lots of different kinds of the scale of blasting vibration and it has a number of a variable effect. So we figure the optimum line through the least-squares regression by using the vibration data measured in hard rock blasting and compared with the design vibration prediction equation. As a result, we confirm that the vibration estimated in this paper is bigger than the design vibration prediction equation in the same charge and distance. If there is a Gaussian normal distribution data on the left-right side of the least squares regression, then we can estimate the vibration prediction equation on reliability 50%(${\beta}=0$), 90%(${\beta}=1.28$), 95%(${\beta}=1.64$). 99.9%(${\beta}=3.09$). As a result, it appears to be suitable that the reliability is 99% at the transverse component, the reliability 95% is at the vertical component, the reliability 90% is at the longitudinal component and the reliability is 95% at the peak vector sum component.