• Title/Summary/Keyword: blast-furnace slag cement

Search Result 778, Processing Time 0.03 seconds

Optimum Mix Proportion and Characteristics of the Combined Self Compacting Concrete according to Cement Types (시멘트 종류에 따른 병용계 자기충전 콘크리트의 최적배합비와 특성)

  • Kwon, Yeong-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.1
    • /
    • pp.55-64
    • /
    • 2009
  • This study is aimed to derive the optimum mix proportion of the combined self compacting concrete according to cement types (blast-furnace slag cement and belite cement) and to propose the basic data to field construction work after evaluating the quality properties. Specially, lime stone powder (LSP) as binder and viscosity agent are used in the combined self compacting concrete because slurry wall of an underground LNG storage tank should be kept stability of quality during concrete working. Replacement ratio of LSP is determined by confined water ratio test and main design factors including fine aggregate ratio ($S_r$), coarse aggregate ratio ($G_v$) and water-cement ratio (W/C) are selected. Also, quality properties including setting time, bleeding content, shortening depth and hydration heat on the optimum mix proportion of the combined self compacting concrete according to cement type are compared and analyzed. As test results, the optimum mix proportion of the combined self compacting concrete according to cement type is as followings. 1) Slag cement type-replacement ratio of LSP 13.5%, $S_r$ 47% and W/C 41%. 2) Belite cement type-replacement ratio of LSP 42.7%, Sr 43% and W/C 51%. But optimum coarse aggregate ratio is 53% regardless of cement types. Also, as test results regarding setting time, bleeding content, shortening depth and hydration heat of the combined self compacting concrete by cement type, belite cement type is most stable in the quality properties and is to apply the actual construction work.

Evaluation of Durability Performance in Concrete Incorporating Low Fineness of GGBFS (3000 Grade) (저분말도 고로슬래그 미분말(3000급)을 혼입한 콘크리트의 내구성능평가)

  • Lee, Seung-Heun;Cho, Sung-Jun;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.4
    • /
    • pp.96-102
    • /
    • 2019
  • When GGBFS(Ground Granulated Blast Furnace Slag) with high blaine is incorporated in concrete, compressive strength in the initial period is improved, but several engineering problems arise such as heat of hydration and quality control. In this paper, compressive strength and durability performance of concrete with 3,000 Grade-low fineness slag are evaluated. Three conditions of concrete mixtures are considered considering workability, and the related durability tests are performed. Although the strength of concrete with 3,000 Grade slag is slightly lower than the OPC(Ordinary Portland Cement) concrete at the age of 28 days, but insignificant difference is observed in long-term compressive strength due to latent hydration activity. The durability performances in concrete with low fineness slag show that the resistances to carbonation and freezing/thawing action are slightly higher than those of concrete with high fineness slag, since reduced unit water content is considered in 3,000 Grade slag mixture. For the long-term age, the chloride diffusion coefficient of the 3000-grade slag mixture is reduced to 20% compared to the OPC mixture, and the excellent chloride resistance are evaluated. Compared with concrete with OPC and high fineness GGBFS, concrete with lower fineness GGBFS can keep reasonable workability and durability performance with reduced water content.

An Experimental Study on Compression Strength and Carbonation Resistance for Ternary High-Performance Concrete with fly-sah, granulated blast furnace (플라이애쉬와 고로슬래그를 사용한 3성분계 고성능 콘크리트의 강도 및 촉진 중성화에 대한 실험적 고찰)

  • Kwon, Young-Rak;Kim, Hong-Sam;Lee, Chang-Young;Cheng, Hai-Moon;Ahn, Tae-Song
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.445-448
    • /
    • 2008
  • It is essential that concrete component is made up with aggregate, cement and water. But today, Public concern is increasing of a variety structure and ocean environmental, resource recycle. Also, According to heat of hydration rising, Concrete is make a causative of concrete-crack. Concrete-crack cause a falling-off in quality of concrete. consequently, High-performance concrete is evaluated by concrete material properties and carbonation resistance with different admixture(fixing fly-ash 20%), granulated blast furnace slag replacement ratio (30%, 45%) different W/B (26%, 30%, 34%) and XRD(X-ray Diffraction) analysis.

  • PDF

Fundamental Study on Pervious Concrete Materials for Airport Pavement Cement Treated Base Course (공항포장 시멘트안정처리기층에 적용하기 위한 투수콘크리트 개발에 관한 기초연구)

  • Kim, Seung Won;Oh, Ji Hyeon;Jang, Bong Jin;Ju, Min Kwan;Kim, In Tai;Park, Cheol Woo
    • International Journal of Highway Engineering
    • /
    • v.15 no.4
    • /
    • pp.65-73
    • /
    • 2013
  • PURPOSES : As a research to develop a cement treated base course for an airport pavement which can enhance its drainage, this paper investigated the strength, infiltration performance and durability of the pervious concrete with respect to maximum coarse aggregate sizes and compaction methods. METHODS : This study measured compressive strength, infiltration rate, continuous porosity and freeze-thaw resistance of pervious concrete specimens, which were fabricated with five different compaction methods and different maximum aggregate sizes. In addition, in order to reduce the usage of Portland cement content and to enhance environment-friendliness, a portion of the cement was replaced with Ground Granulated Blast Furnace Slag (GGBS). RESULTS: Compressive strength requirement, 5 MPa at 7 days, was met for all applied compaction methods and aggregate sizes, except for the case of self-compaction. Infiltration rate became increased as the size of aggregate increased. The measured continuous porosities varied with the different compaction methods but the variation was not significant. When GGBS was incorporated, the strength requirement was successfully satisfied and the resistance to freezing-thawing was also superior to the required limit. CONCLUSIONS: The infiltration rate increased as the maximum size of aggregate increased but considering construct ability and supply of course aggregate, its size is recommended to be 25mm. With the suggested mix proportions, the developed pervious concrete is expected to successfully meet requirements for strength, drainage and durability for cement treated base or subbase course of an airport pavement.

CO2 Sequestration and Utilization of Calcium-extracted Slag Using Air-cooled Blast Furnace Slag and Convert Slag (괴재 및 전로슬래그를 이용한 CO2 저감 및 칼슘 추출 후 슬래그 활용)

  • Yoo, Yeongsuk;Choi, Hongbeom;Bang, Jun-Hwan;Chae, Soochun;Kim, Ji-Whan;Kim, Jin-Man;Lee, Seung-Woo
    • Applied Chemistry for Engineering
    • /
    • v.28 no.1
    • /
    • pp.101-111
    • /
    • 2017
  • Mineral carbonation is a technology in which carbonates are synthesized from minerals including serpentine and olivine, and industrial wastes such as slag and cement, of which all contain calcium or magnesium when reacted with carbon dioxide. This study aims to develop the mineral carbonation technology for commercialization, which can reduce environmental burden and process cost through the reduction of carbon dioxide using steel slag and the slag reuse after calcium extraction. Calcium extraction was conducted using NH4Cl solution for air-cooled slag and convert slag, and ${\geq}98%$ purity calcium carbonate was synthesized by reaction with calcium-extracted solution and carbon dioxide. And we conducted experimentally to minimize the quantity of by-product, the slag residue after calcium extraction, which has occupied large amount of weight ratio (about 80-90%) at the point of mineral carbonation process using slag. The slag residue was used to replace silica sand in the manufacture of cement panel, and physical properties including compressive strength and flexible strength of panel using the slag residue and normal cement panel, respectively, were analyzed. The calcium concentration in extraction solution was analyzed by inductively coupled plasma optical emission spectrometer (ICP-OES). Field-emission scanning electron microscope (FE-SEM) was also used to identify the surface morphology of calcium carbonate, and XRD was used to analyze the crystallinity and the quantitative analysis of calcium carbonate. In addition, the cement panel evaluation was carried out according to KS L ISO 679, and the compressive strength and flexural strength of the panels were measured.

Effect of Ground Granulated Blast-Furnace Slag on Life-Cycle Environmental Impact of Concrete (고로슬래그가 콘크리트의 전 과정 환경영향에 미치는 효과)

  • Yang, Keun-Hyeok;Seo, Eun-A;Jung, Yeon-Back;Tae, Sung-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.1
    • /
    • pp.13-21
    • /
    • 2014
  • To quantitatively evaluate the influence of ground granulated blast-furnace slag (GGBS) as a supplementary cementitious material on the life-cycle environmental impact of concrete, a comprehensive database including 3395 laboratory mixes and 1263 plant mixes was analyzed. The life-cycle assesment studied for the environmental impact of concrete can be summarized as follows: 1) the system boundary considered was from cradle to pre-construction; 2) Korea life-cycle inventories were primarily used to assess the environmental loads in each phase of materials, transportation and production of concrete; and 3) the environmental loads were quantitatively converted into environmental impact indicators through categorization, characterization, normalization and weighting process. The life-cycle environmental impacts of concrete could be classified into three categories including global warming, photochemical oxidant creation and abiotic resource depletion. Furthermore, these environmental impacts of concrete was significantly governed by the unit content of ordinary portland cement (OPC) and decreased with the increase of the replacement level of GGBS. As a result, simple equations to assess the environmental impact indicators could be formulated as a function of the unit content of binder and replacement level of GGBS.

Determination of Water-to-Binder Ratios on the Equivalent Compressive Strength of Concrete with Supplementary Cementitious Materials (혼화재 치환 콘크리트의 등가 압축강도에 대한 물-결합재비의 결정)

  • Yoon, Hyun-Sub;Yang, Keun-Hyeok
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.6
    • /
    • pp.687-693
    • /
    • 2015
  • The present study proposed a k-value to determine the water-to-binder ratio of concrete using fly ash (FA) or ground granulated blast-furnace slag (GGBS) as a partial replacement of ordinary portland cement (OPC) with regard to an equivalent strength of OPC concrete. From the regression analysis using an extensive database including 7076 concrete mixes, k-values were determined for various water-to-binder ratios when the replacement ratio of OPC by the addition of FA or GGBS were below 50%. For deriving an equation to identify k-value, the relationship of concrete compressive strength and water-to-binder ratio was generalized by an exponential function. In general, k-values decreased with the increases in the addition of FA or GGBS for replacement of OPC and water-to-binder ratio. The rate in decreasing k-value against water-to-binder ratio was marginally affected by the addition of FA or GGBS, although a higher k-value was commonly obtained for GGBS concrete than for FA concrete at the same water-to-binder ratio. Consequently, the determined k-values were simplified as a function of water-to-binder ratio and the addition ratio of FA or GGBS as replacement of OPC.

Long-Term Durability Estimation of Cementless Concrete Based on Alkali Activated Slag (알칼리 활성 슬래그 기반 무시멘트 콘크리트의 장기 내구성 평가)

  • Lee, Hyun-Jin;Lee, Seok-Jin;Bae, Su-Ho;Kwon, Soon-Oh;Lee, Kwang-Myong;Jung, Sang-Hwa
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.2
    • /
    • pp.149-156
    • /
    • 2016
  • It has been well known that concrete structures exposed to chloride and sulfate attack environments lead to significant deterioration in their durability due to chloride ion and sulfate ion attack. The purpose of this experimental research is to evaluate the long-term durability against chloride ion and sulfate attack of the alkali activated cementless concrete replacing the cement with ground granulated blast furnace slag. For this purpose, the cementless concrete specimens were made for water-binder ratios of 40%, 45%, and 50%, respectively and then this specimens were cured in the water of $20{\pm}3^{\circ}C$ and immersed in fresh water, 10% sodium sulfate solution for 28, 91, 182, and 365 days, respectively. To evaluate the long-term durability to chloride ion and sulfate attack for the cementless concrete specimens, the diffusion coefficient for chloride ion and compressive strength ratio, mass change ratio, and length change ratio were measured according to the NT BUILD 492 and JSTM C 7401, respectively. It was observed from the test results that the resistance against chloride ion and sulfate attack of the cemetntless concrete were comparatively largely increased than those of OPC concrete irrespective of water-binder ratio.

An Investigation on the Strength Properties and Fluidity of Concrete with various Disign Strength according to Ground Granulated Blast Furnace Slag contents (설계강도가 다른 고강도콘크리트의 고로슬래그 대체율에 따른 유동성 및 강도발현특성 검토)

  • Choi, Sun-Mi;Lee, Gun-Su;Lee, Bum-Sik;Kim, Sang-Yun;Bae, Kee-Sun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.837-840
    • /
    • 2008
  • This study was achieved experiment to evaluate effect on fluidity and strength development ratio by slag replacement ratio to $40{\sim}100MPa$ HSC(High Strength Concrete) containing blast furnace slag(GGBS) and fly-ash(FA). Also it was suggested that most suitable replacement ratio of GGBS is effect by strength. The mix plan of concrete used in an experiment was used to the GGBS replacement ratio of 0, 12, 25% as the cement materials, and fly ash was used equally by replacement ratio 15%. According to test results, for use GGBS with fly ash as binder, slump of GGBS replacement ratio 25% is the most superior in 40MPa series, and appeared by thing which slump flow of GGBS 12% is the most superior in 60, 80MPa's series. The other side, was expressed that fluidity is excellent by FA replacement ratio 15% in 100MPa series. In the case of compressive strength 40MPa, it was exposed that the strength revelation is effect in until the GGBS principal parts ratio increases by replacement ratio 25%. Also, it was exposed that GGBS mixing ratio more than replacement ratio 25% is not since fitness in high strength concrete more than 100MPa.

  • PDF

Basic Mixing and Mechanical Tests on High Ductile Fiber Reinforced Cementless Composites (고인성 섬유보강 무시멘트 복합체의 기초 배합 및 역학 실험)

  • Cho, Chang-Geun;Lim, Hyun-Jin;Yang, Keun-Hyeok;Song, Jin-Kyu;Lee, Bang-Yeon
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.2
    • /
    • pp.121-127
    • /
    • 2012
  • Cement has been traditionally used as a main binding material of high ductile fiber reinforced cementitious composites. The purpose of this paper is to investigate the feasibility of using alkali-activated slag and polyvinyl alcohol (PVA) fibers for manufacturing high ductile fiber reinforced cementless composites. Two mixture proportions with proper flowability and mortar viscosity for easy fiber mixing and uniform fiber dispersion were selected based on alkali activators. Then, the slump flow, compression, uniaxial tension and bending tests were performed on the mixes to evaluate the basic properties of the composites. The cementless composites showed an average slump flow of 465 mm and tensile strain capacity of approximately 2% of due to formation of multiple micro-cracks. Test results demonstrated a feasibility of manufacturing high ductile fiber reinforced composites without using cement.