• Title/Summary/Keyword: blast wave model

Search Result 48, Processing Time 0.025 seconds

Blast Modeling of Concrete Column Using PFC (PFC를 이용한 콘크리트기둥의 발파모델링)

  • Choi Byung-Hee;Yang Hyung-Sik;Ryu Chang-Ha
    • Explosives and Blasting
    • /
    • v.23 no.1
    • /
    • pp.47-54
    • /
    • 2005
  • An explosion modeling technique was developed by using the spherical discrete element code, $PFC^{3D}$, which can be used to model the dynamic stress wave propagation phenomenon. The modeling technique is simply based on an idea that the explosion pressure should be applied to a $PFC^{3D}$ particle assembly not in the form of an external force (body force), but in the form of a contact force (surface force). A test blast was conducted for a RC column, whose dimension was $600\times300\times1800$ in millimeters. The initial velocities of the surface movements were measured to be in the range of $14\~18\;m/s$ with the initiation times of $1.5\~2.0m$. Then the blasting procedure was simulated by using the modeling technique. The particle assembly representing the concrete was made of cement mortar and coarse aggregates, whose mirco-properties were obtained from the calibration processes. As a result, the modeling technique developed in this study made it possible for the burden to move with the velocity of $17\~24\;m/s$, which are slightly higher values compared to those of the test blast.

A Study on the Theory and Its Verification of Dynamic Analysis Program (MPDAP) for Modelling of Saturated Multi Phase Porous Media (포화된 다공성 지반의 모델링을 위한 동적해석 프로그램(MPDAP)의 이론 및 이의 검증에 괄한 연구)

  • 김광진;문홍득
    • Geotechnical Engineering
    • /
    • v.13 no.1
    • /
    • pp.5-18
    • /
    • 1997
  • In order to make reliable ground shock predictions in saturated geological media, it is necessary to use multi -phase material models and numerical codes. This paper presents the results of theoretical study of the fundamental behavior of multi-phase porous media subjected to high dynanlic loadings, and deals with the development of numerical code MPDAP with JWL(Jones-Wilkins-Lee) model, which is capable of considering the kinds and characters of explosives. To check the global equilhorium equations of the numerical code, we carried out some verifications. In the cases of the elastic spherical wave propagation in a single phase medium, one-dimensional linear ronsolidation, and one timensional wave propagation in saturated linear elastic soils and rocks, the results calculated by MPDAP show close agreement with closed-form solutions or numerical solutions generated with two phase code.

  • PDF

Numerical Analysis on the Compressible Flow Characteristics of Supersonic Jet Caused by High-Pressure Pipe Rupture Using CFD (CFD를 이용한 고압파이프 파단 시 초음속제트의 압축성유동 특성에 관한 수치해석)

  • Jung, Jong-Kil;Kim, Kwang-Chu;Yoon, Jun-Kyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.10
    • /
    • pp.649-657
    • /
    • 2017
  • A rupture in a high-pressure pipe causes the fluid in the pipe to be discharged in the atmosphere at a high speed resulting in a supersonic jet that generates the compressible flow. This supersonic jet may display complicated and unsteady behavior in general. In this study, Computational Fluid Dynamics (CFD) analysis was performed to investigate the compressible flow generated by a supersonic jet ejected from a high-pressure pipe. A Shear Stress Transport (SST) turbulence model was selected to analyze the unsteady nature of the flow, which depends upon the various gases as well as the diameter of the pipe. In the CFD analysis, the basic boundary conditions were assumed to be as follows: pipe of diameter 10 cm, jet pressure ratio of 5, and an inlet gas temperature of 300 K. During the analysis, the behavior of the shockwave generated by a supersonic jet was observed and it was found that the blast wave was generated indirectly. The pressure wave characteristics of hydrogen gas, which possesses the smallest molecular mass, showed the shortest distance to the safety zone. There were no significant difference observed for nitrogen gas, air, and oxygen gas, which have similar molecular mass. In addition, an increase in the diameter of the pipe resulted in the ejected impact caused by the increased flow rate to become larger and the zone of jet influence to extend further.

Numerical Analysis for Linear and Nonlinear Attenuation Characteristics of Exhaust Silencer Systems (배기 소음기의 선형 및 비선형 감쇄 특성에 대한 수치해석)

  • 김종태;김용모;맹주성;류명석;구영곤
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.4
    • /
    • pp.179-189
    • /
    • 1996
  • An unstructured grid finite-volume method has been applied to predict the linear and nonlinear attenuation characteristics of the expansion chamber silencer system. In order to achieve a grid flexibility and a solution adaptation for geometrically silencer system. In order to achieve a grid flexibility and a solution adaptation for geometrically complex flow regions associated with the actual silencers, the unstructured mesh algorithm in context with the node-centered finite volume method has been employed. The present numerical model has been validated by comparison with the analytical solutions and the experimental data for the acoustic field of the concentric expansion chamber with and without pulsating flows, as well as the axisymmetric blast flowfield with open end. Effects of the chamber geometry on the nonlinear wave attenuation characteristics is discussed in detail.

  • PDF

Numerical Simulation and Experiment on Supersonic Air-Breathing Laser-Spike Propulsion Vehicle (초음속 공기 흡입식 레이저 스파이크 추진 비행체에 관한 수치 해석 및 실험적 연구)

  • Kim Sukyum;Kim Young-Taek;Jeong In-Seock
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.57-61
    • /
    • 2004
  • As a kind of application of laser propulsion, air-breathing laser-spike engine can be designed for aircraft in atmospheric flight. Laser-spike engine generates thrust using the blast wave induced by laser energy instead of combustion process. And this engine use air as propellant, therefore, it need no on board propellant. For experimental study, supersonic wind tunnel and spark generator were used. Flow visualization was performed using 2-dimensional laser-spike engine model And numerical simulation of the corresponding case for the experiment was done and compared with experimental case. Detailed results will be discussed at the presentation.

  • PDF

The optical afterglow of GRB 180205A

  • Paek, Gregory SungHak;Im, Myungshin;Choi, Changsu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.59.1-59.1
    • /
    • 2018
  • On 2018 February 5 a gamma ray burst with trigger time 04:25:29.3 UT was detected by Swift BAT and this event was named GRB 180205A. We observed the optical afterglow of GRB 180205A starting from about 1 hour after the burst until February 22 in the optical bands with the 1m telescope of Deokheung Optical Astronomy Observatory (DOAO), the 1m telescope at Mt. Lemmon Optical Astronomy Observatory(LOAO) and the 0.8m and 0.25m telescopes at McDonald Observatory. According to the fireball model, which is a well-accepted and conventional model for the afterglow of the GRB, the mechanism of the afterglow is that the expanding external blast wave of the GRB successively collides with the ambient medium and loses its energy, and as a result emits radiation at wavelengths longer than gamma rays. Here we present optical photometry and light curve of the afterglow in the R band and analyze it to characterize GRB 180205A.

  • PDF

Supersonic Base Flow by Using High Order Schemes

  • Shin, Edward Jae-Ryul;Won, Su-Hee;Cho, Doek-Rae;Choi, Jeong-Yeol
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.723-728
    • /
    • 2008
  • We performed numerical analysis of base drag phenomenon, when a projectile with backward step flies into atmosphere at supersonic speed. We compared with other researchers. From our previous studies that were 2-dimensional simulation, we found out from sophisticated simulations that need dense mesh points to compare base pressure and velocity profile after from base with experimental data. Therefore, we focus on high order spatial disceretization over 3rd order with TVD such as MUSCL TVD 3rd, 5th, and WENO 5th order, and Limiters such as minmod, Triad. Moreover, we enforce to flux averaging schemes such as Roe, RoeM, HLLE, AUSMDV. In present, one dimensional result of Euler tests, there are Sod, Lax, Shu-Osher and interacting blast wave problems. AUSMDV as a flux averaging scheme with MUSCL TVD 5th order as spatial resolution is good agreement with exact solutions than other combinations. We are carrying out the same approaches into 3-dimensional base flow only candidate flux schemes that are Roe, AUSMDV. Additionally, turbulence models are used in 3-dimensional flow, one is Menter s SST DES model and another is Sparlat-Allmaras DES/DDES model in Navier-Stokes equations.

  • PDF

Numerical Analysis on Shock Waves Influence Generated by Supersonic Jet Flow According to Working Fluids (작동유체에 따른 초음속 제트유동에 의해 생성되는 충격파 영향에 관한 수치해석)

  • Jung, Jong-Kil;Yoon, Jun-Kyu;Lim, Jong-Han
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.7
    • /
    • pp.510-517
    • /
    • 2016
  • Supersonic jet technology using high pressures has been popularly utilized in diverse industrial and engineering areas related to working fluids. In this study, to consider the effects of a shock wave caused by supersonic jet flow from a high pressure pipe, the SST turbulent flow model provided in the ANSYS FLUENT v.16 was applied and the flow characteristics of the pressure ratio and Mach number were analyzed in accordance with the working fluids (air, oxygen, and hydrogen). Before carrying out CFD (Computational Fluid Dynamics) analysis, it was presumed that the inlet gas temperature was 300 K and pressure ratio was 5 : 1 as the boundary conditions. The density function was derived from the ideal gas law and the viscosity function was derived from Sutherland viscosity law. The pressure ratio along the ejection distance decreased more in the lower density working fluids. In the case of the higher density working fluids, however, the Mach number was lower. This shows that the density of the working fluids has a considerable effect on the shock wave. Therefore, the reliability of the analysis results were improved by experiments and CFD analysis showed that supersonic jet flow affects the shock wave by changing shape and diameter of the jet, pressure ratio, etc. according to working fluids.

EUNHA: A NEW COSMOLOGICAL HYDRODYNAMIC SIMULATION CODE

  • Shin, Jihye;Kim, Juhan;Kim, Sungsoo S.;Park, Changbom
    • Journal of The Korean Astronomical Society
    • /
    • v.47 no.3
    • /
    • pp.87-98
    • /
    • 2014
  • We develop a parallel cosmological hydrodynamic simulation code designed for the study of formation and evolution of cosmological structures. The gravitational force is calculated using the TreePM method and the hydrodynamics is implemented based on the smoothed particle hydrodynamics. The initial displacement and velocity of simulation particles are calculated according to second-order Lagrangian perturbation theory using the power spectra of dark matter and baryonic matter. The initial background temperature is given by Recfast and the temperature uctuations at the initial particle position are assigned according to the adiabatic model. We use a time-limiter scheme over the individual time steps to capture shock-fronts and to ease the time-step tension between the shock and preshock particles. We also include the astrophysical gas processes of radiative heating/cooling, star formation, metal enrichment, and supernova feedback. We test the code in several standard cases such as one-dimensional Riemann problems, Kelvin-Helmholtz, and Sedov blast wave instability. Star formation on the galactic disk is investigated to check whether the Schmidt-Kennicutt relation is properly recovered. We also study global star formation history at different simulation resolutions and compare them with observations.

Numerical Analysis on Feedback Mechanism of Supersonic Impinging Jet using LES (LES를 이용한 초음속 충돌제트의 피드백 메커니즘에 대한 수치해석 연구)

  • Oh, Se-Hong;Choi, Dae Kyung;Kim, Won Tae;Chang, Yoon-Suk;Choi, Choengryul
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.13 no.2
    • /
    • pp.51-59
    • /
    • 2017
  • Steam jets ejected from a rupture zone of high energy pipes may cause damage to adjacent structures. This event could lead to more serious accidents in nuclear power plants. Therefore, to prevent serious accidents, high energy pipes of nuclear power plants are designed according to the ANSI / ANS 58.2 technical standard. However, the US Nuclear Regulatory Commission (USNRC) has recently pointed out non-conservatism in existing high energy pipe fracture evaluation methods, and required the assessment of the unsteady load of the jet caused by a potential feedback mechanism as well as the impact range of steam jet, the jet impact loads and the blast wave effects at the initial breakage stage. The potential feedback mechanism refers to a phenomenon in which a vortex formed by impingement jets amplifies vortex itself and induces jet vibration in a shear layer. In this study, CFD methodology using the LES turbulence model is established and numerical analysis is carried out to evaluate the dynamic behavior of impingement jets and the potential feedback mechanism during jet impingement. Obtained results have been compared with an empirical correlation and experiment.