• 제목/요약/키워드: blast resistance

검색결과 532건 처리시간 0.028초

정제유지류 도포가 혼화재 다량치환한 콘크리트의 탄산화에 미치는 영향 (Coating Effect by Applying Refined Cooking Oil on the Carbonation of High Volume Admixture Incorporating Concrete)

  • 김태청;최영두;백병훈;신동안;오선교;한천구
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2014년도 춘계 학술논문 발표대회
    • /
    • pp.146-147
    • /
    • 2014
  • In this study, as the resistance of the carbonation for high volume admixture incorporating concrete, coating effect of using refined cooking oil in the surface of high volume admixture incorporating concrete has been tested. The following results could be made as the conclusion. For the fresh concrete, the slump and air content has been identified as satisfying the target range. For the hardened concrete, comparing with specimen of Plain, specimen with coating showed better long age compressive strength. For the carbonation speed, the specimen of FA30 showed highest speed and the specimen of BS60 showed higher speed than specimen of Plain. For all the specimens coated with RCO, as the decrease of capillary pores inside the concrete, the carbonation speed has been obviously decreased and with even better effect than using PEP coating. It could be identified that specimens with coating by RCO showed good effect on refrain the speed of carbonation.

  • PDF

Combined effect of mineral admixture and curing temperature on mechanical behavior and porosity of SCC

  • Djamila, Boukhelkhal;Othmane, Boukendakdji;Said, Kenai;El-Hadj, Kadri
    • Advances in concrete construction
    • /
    • 제6권1호
    • /
    • pp.69-85
    • /
    • 2018
  • In order to provide sufficient stability and resistance against bleeding and segregation during transportation and placing, mineral admixtures are often used in self-compacting concrete mixes (SCC). These fine materials also contribute to reducing the construction cost and the consumption of natural resources. Many studies have confirmed the benefits of these mineral admixtures on properties of SCC in standard curing conditions. However, there are few published reports regarding their effects at elevated curing temperatures. The main objective of this study is to investigate the effect of three different mineral admixtures namely limestone powder (LP), granulated blast furnace slag (GS) and natural pozzolana (PZ) on mechanical properties and porosity of SCC when exposed to different curing temperatures (20, 40, 60 and $80^{\circ}C$). The level of substitution of cement by mineral admixture was fixed at 15%. The results showed that increasing curing temperature causes an improvement in performance at an early age without penalizing its long-term properties. However the temperature of $40^{\circ}C$ is considered the optimal curing temperature to make economical and high performance SCC. On the other hand, GS is the most suitable mineral admixture for SCC under elevated curing temperature.

Comparative Analysis of the Korean Population of Magnaporthe oryzae by Multilocus Microsatellite Typing

  • Choi, Jaehyuk;Kim, Hyojung;Lee, Yong-Hwan
    • The Plant Pathology Journal
    • /
    • 제29권4호
    • /
    • pp.435-439
    • /
    • 2013
  • Rice blast fungus, Magnaporthe oryzae, inflicts serious damage to global rice production. Due to high variability of this fungal pathogen, resistance of newly-released rice cultivars is easily broken down. To understand the population structure of M. oryzae, we analyzed the genetic diversity of the Korean population using multilocus microsatellite typing. Eleven microsatellite markers were applied to the population of 190 rice isolates which had been collected in Korea for two decades since the 1980's. Average values of gene diversity and allele frequency were 0.412 and 6.5, respectively. Comparative analysis of the digitized allele information revealed that the Korean population exhibited a similar level of allele diversity to the integrated diversity of the world populations, suggesting a particularly high diversity of the Korean population. Therefore, these microsatellite markers and the comprehensive collection of field isolates will be useful genetic resources to identify the genetic diversity of M. oryzae population.

도열병균의 Transposable elements (Transposable Elements in Magnaporthe Species)

  • 지명환;박숙영
    • 식물병연구
    • /
    • 제24권2호
    • /
    • pp.87-98
    • /
    • 2018
  • 곰팡이 종들은 유전체내에 대략 10% 정도의 다양한 전이인자와 함께 반복적인 염기서열을 갖는다. 이러한 전이인자들의 대부분은 유전체내에서 활발히 전이되며 곰팡이 병원균의 기주 범위와도 연관성을 갖으며 분포하는 것으로 알려져있다. 화본과 작물에 병을 일으키는 도열병에 분포하는 전이인자들은 활발히 전이하는 것으로 보이며, 특정 기주에 감염하는 개체군에 특이적으로 분포하는 경우가 많았다. 다수의 연구 보고에서도열병균의 전이인자가 비병원성 유전자의 기능을 상실하는데 작용하여, 이로인해 저항성 품종에 병을 일으켰다. 따라서, 도열병균의 전이인자들은 식물-곰팡이 사이의 상호 진화를 유도하는 원동력 중 하나일 수 있다. 본 총설에서는 도열병균에 존재하는 전이인자들의 종류와 생물학적인 기능에 관해 정리하였다.

도열병에 감염된 벼의 엽조직에서 Peroxidase의 활성 (Peroxidase Activity in Leaf Tissue of Rice Infected by Pyricularia oryzae)

  • 박원목;이용세;박상호
    • 한국식물병리학회지
    • /
    • 제1권3호
    • /
    • pp.178-183
    • /
    • 1985
  • 수도품종 농백, 진흥, 낙동, 태백 등 4품종과 도열병균 KJ-101과 KJ-301의 2race를 사용하여 peroxidase 활성증가와 저항성과의 관계를 관찰하였다. peroxidase 활성은 수도유균가 성장할수록 모든 품종에서 증가되는 경향은 있었으나 품종간 차이는 크지 않았다. 도열병균을 접종 후 시간이 경과함에 따라 이병 잎에서는 무접종 건전잎보다 효소활성이 높았고 접종된 균주에 비친화적인 품종보다 발병이 심한 친화적 품종에서 더욱 높았다. 전기영동법에 의한 peroxidase pattern은 이병잎에서는 도열병균의 peroxidase band를 관찰할 수 없었다. 질소시비량을 증가시켰을 지라도 peroxidase 활성은 변함이 없었다.

  • PDF

경량기포콘크리트(ALC) 패널을 건축물 외장 커튼월에 적용을 위한 도료의 기초적 연구 (Applications and Analysis of Exterior Paints for the Curtain Wall Panel System based on the Autoclaved Lightweight Concrete(ALC))

  • 이용수;라현주
    • 한국디지털건축인테리어학회논문집
    • /
    • 제12권3호
    • /
    • pp.59-66
    • /
    • 2012
  • Autoclaved Lightweight Concrete(ALC) features such as a high performance insulation, the fire resistance, the advantage of easy handing construction, and lightweight panels applied the curtain wall system. ALC materials are certified as non-toxic environmental and eco-friendly productions. But ALC external panels mixed with blast furnace slag pounder and silica fume have to be coated with a stucco compound or plaster because of resisting the ambient environment. This study is that mixing tests to evaluate a performance analysis of exterior paints to be make-up pigments(organic or inorganic) coated with panel surface. Testing compared by KS F 2476; flow test, KS F 2426; compression strength test, KS F 2762; bond strength test. In results, the case of the inorganic binder, ratio of alumina cement : anhydrite is 90:10 to 80:20 at the highest level of intensity. In the case of the organic binder, adhesive strength rating at surface of ALC, the pullout strength is below 0.5 $N/mm^2$ but the normal concrete is over 2.0$N/mm^2$. A contents ratio of EVA resin is more than 3% and then bond strength is effectively.

염해 및 동결융해의 복합열화 작용에 의한 부식촉진시험에 관한 연구 (A Study on Accelerated Corrosion Test by Combined Deteriorating Action of Salt Damage and Freeze-Thaw)

  • 박상순;소병탁
    • Corrosion Science and Technology
    • /
    • 제15권1호
    • /
    • pp.18-27
    • /
    • 2016
  • In this study, the accelerated corrosion test by combined deteriorating action of salt damage and freeze-thaw was investigated. freeze-thaw cycle is one method for corrosion testing; corrosion initiation time was measured in four types of concrete samples, i.e., two samples mixed with fly ash (FA) and blast furnace slag (BS), and the other two samples having two water/cement ratio (W/C = 0.6, 0.35) without admixture (OPC60 and OPC35). The corrosion of rebar embedded in concrete occurred most quickly at the $30^{th}$ freeze-thaw cycle. Moreover, a corrosion monitoring method with a half-cell potential measurement and relative dynamic elastic modulus derived from resonant frequency measures was conducted simultaneously. The results indicated that the corrosion of rebar occurred when the relative dynamic elastic modulus was less than 60%. Therefore, dynamic elastic modulus can be used to detect corrosion of steel bar. The results of the accelerated corrosion test exhibited significant difference according to corrosion periods combined with each test condition. Consequently, the OPC60 showed the lowest corrosion resistance among the samples.

2성분계 및 3성분계 초유동 자기충전 콘크리트의 유동성 평가 (Flowability Evaluation of Binary and Ternary Blended of Ultra Flowing Self-Compacting Concrete)

  • 최연왕;전준영;김충언;정재권;정우용
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 추계 학술발표회 논문집
    • /
    • pp.485-488
    • /
    • 2006
  • This research has evaluated flowability of ultra flowing self-compacting concrete, which is limitedly used for traditional building structures, in accordance with the first class regulations of Japan Society of Civil Engineering(JSCE) that can be applied to overcrowding-arrangement of bar, as a part of application methods that ultra flowing self-compacting concrete is applied to both precast and prestress bridge structures. The experimental results show that the flowability is acceptable in ternary blended among binary and ternary blended mixings, which satifies the first class regulation of JSCE. It is also concluded to use fly ash to increase viscosity of concrete in the case of segregation resistance because of low viscosity in the mixture of slag from blast furnace and limestone micropowder. Satisfying goals of every mixing after U-box self-compacting experiment, we conclude that ultra flowing self-compacting concrete is applicable to bridges and civil constructions of overcrowding arrangement of bar with evaluation of flowability of ultra flowing self-compacting concrete.

  • PDF

3성분계 포졸란재를 이용한 반응성 분체 콘크리트(RPC)의 고온특성 (The mechanical properties of Reactive Powder Concrete using Ternary Pozzolanic Materials exposed to high Temperature)

  • 장칩도르지;소형석;이제방;소승영
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2013년도 추계 학술논문 발표대회
    • /
    • pp.68-71
    • /
    • 2013
  • Reactive Powder Concrete (RPC) is an ultra high strength and high ductility cement-based composite material and has shown some promise as a new generation concrete in construction field. It is characterized by a silica fume-cement mixture with very low water-binder (w/b) ratio and very dense microstructure, which is formed using various powders such as cement, silica fume and very fine quartz sand (0.15~0.4mm) instead of ordinary coarse aggregate. However, the unit weight of cement in RPC is as high as 900~1,000 kg/㎥ due to the use of very fine sand instead of coarse aggregate, and a large volume of relatively expensive silica fume as a high reactivity pozzolan is also used, which is not produced in Korea and thus must be imported. Since the density of RPC has a heavy weight at 2.5~3.0 g/㎤. In this study, the modified RPC was made by the combination of ternary pozzolanic materials such as blast furnace slag and fly ash, silica fume in order to economically and practically feasible for Korea's situation. The fire resistance and structural behavior of the modified RPC exposed to high temperature were investigated.

  • PDF

Influence of Iranian low-reactivity GGBFS on the properties of mortars and concretes by Taguchi method

  • Ramezanianpour, A.A.;Kazemian, A.;Radaei, E.;AzariJafari, H.;Moghaddam, M.A.
    • Computers and Concrete
    • /
    • 제13권4호
    • /
    • pp.423-436
    • /
    • 2014
  • Ground Granulated Blast Furnace Slag (GGBFS) is widely used as an effective partial cement replacement material. GGBFS inclusion has already been proven to improve several performance characteristics of concrete. GGBFS provides enhanced durability, including high resistance to chloride penetration and protection against alkali silica reaction. In this paper results of an experimental research work on influence of low-reactivity GGBFS (which is largely available in Iran) on the properties of mortars and concretes are reported. In the first stage, influence of GGBFS replacement level and fineness on the compressive strength of mortars was investigated using Taguchi method. The analysis of mean (ANOM) statistical approach was also adopted to develop the optimal conditions. Next, based on the obtained results, concrete mixtures were designed and water penetration, capillary absorption, surface resistivity, and compressive strength tests were carried out on highstrength concrete specimens at different ages up to 90 days. The results indicated that 7-day compressive strength is adversely affected by GGBFS inclusion, while the negative effect is less evident at later ages. Also, it was inferred that use of low-reactivity GGBFS (at moderate levels such as 20% and 30%) can enhance the impermeability of high-strength concrete since 28 days age.