Browse > Article
http://dx.doi.org/10.5423/RPD.2018.24.2.87

Transposable Elements in Magnaporthe Species  

Chi, Myoung-Hwan (Noble Research Institute)
Park, Sook-Young (Department of Plant Medicine, College of Life Science and Natural Resources, Sunchon National University)
Publication Information
Research in Plant Disease / v.24, no.2, 2018 , pp. 87-98 More about this Journal
Abstract
The fungal species contain diverse transposable elements and repetitive sequences up to ~10% of their genome. It has been reported that distribution of transposable elements tends to correlate with the host range of the pathogen. Moreover, transposable elements cause the loss of an avirulence gene in the pathogen, which resulted in disease on a resistance cultivar. Thus, the transposable elements in the fungal pathogens may be one of the key factors driving the plant-fungus interactive evolution. In this article, we reviewed classification and biological functions of transposable elements in Magnaporthe species.
Keywords
Magnaporthe grisea; Magnaporthe oryzae; Retrotransposon; Rice blast; Transposon;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Kiyosawa, S. 1982. Genetic and epidemiological modeling of breakdown of plant disease resistance. Annu. Rev. Phytopathol. 20: 93-117.   DOI
2 Kumar, A. and Bennetzen, J. L. 1999. Plant retrotransposons. Annu. Rev. Genet. 33: 479-532.   DOI
3 Langin, T., Capy, P. and Daboussi, M. J. 1995. The transposable element impala, a fungal member of the Tc1-mariner superfamily. Mol. Gen. Genet. 246: 19-28.   DOI
4 Li, W., Wang, B., Wu, J., Lu, G., Hu, Y., Zhang, X. et al. 2009. The Magnaporthe oryzae avirulence gene AvrPiz-t encodes a predicted secreted protein that triggers the immunity in rice mediated by the blast resistance gene Piz-t. Mol. Plant-Microbe Interact. 22: 411-420.   DOI
5 Martin, B., Humbert, O., Camara, M., Guenzi, E., Walker, J., Mitchell, T. et al. 1992. A highly conserved repeated DNA element located in the chromosome of Streptococcus pneumoniae. Nucleic Acids Res. 20: 3479-3483.   DOI
6 Mcclintock, B. 1984. The significance of responses of the genome to challenge. Science 226: 792-801.   DOI
7 Mchale, M. T., Roberts, I. N., Noble, S. M., Beaumont, C., Whitehead, M. P., Seth, D. et al. 1992. CfT-I: an LTR-retrotransposon in Cladosporium fulvum, a fungal pathogen of tomato. Mol. Gen. Genet. 233: 337-347.
8 Meyn, M. A., Farrall, L., Chumley, F. G., Valent, B. and Orbach, M. J. 1998. LINEs and SINEs in Magnaporthe grisea. In: Proceedings of the Int. Rice Blast Disease Conference 2nd. Abstract S4, O-22.
9 Moerman, D. G. and Waterston, R. H. 1989. Mobile Elements in Caenorhabditis Elegans and Other Nematodes. American Society for Microbiology, Washington, DC, USA.
10 Morgante, M. 2005. Plant genome organisation and diversity: the year of the junk! Curr. Opin. Bitechnol. 17: 168-173.
11 Anaya, N. and Roncero, M. I. 1995. Skippy, a retrotransposon from the fungal plant pathogen Fusarium oxysporum. Mol. Gen. Genet. 249: 637-647.   DOI
12 Bennetzen, J. 2005. Transposable elements, gene creation and genome rearrangement in flowering plants. Curr. Opin. Genet. Dev. 15: 621-627.   DOI
13 Motallebi, P., Javan-Nikkhah, M., Okhovvat, M., Berdi Fotouhifar, K. and Hossien Mosahebi, G. 2009. Differentiation of Magnaporthe species complex by rep-PCR genomic fingerprinting. Commun. Agric. Appl. Biol. Sci. 74: 821-829.
14 Munoz-Lopez, M. and Garcia-Perez, J. L. 2010. DNA transposons: nature and applications in genomics. Curr. Genomics 11: 115-128.   DOI
15 Murata, T., Kadotani, N., Yamaguchi, M., Tosa, Y., Mayama, S. and Nakayashiki, H. 2007. siRNA-dependent and -independent post-transcriptional cosuppression of the LTR-retrotransposon MAGGY in the phytopathogenic fungus Magnaporthe oryzae. Nucleic Acids Res. 35: 5987-5994.   DOI
16 Nakayashiki, H., Kiyotomi, K., Tosa, Y. and Mayama, S. 1999. Transposition of the retrotransposon MAGGY in heterologous species of filamentous fungi. Genetics 153: 693-703.
17 Nakayashiki, H., Matsuo, H., Chuma, I., Ikeda, K., Betsuyaku, S., Kusaba, M. et al. 2001. Pyret, a Ty3/Gypsy retrotransposon in Magnaporthe grisea contains an extra domain between the nucleocapsid and protease domains. Nucleic Acids Res. 29: 4106-4113.   DOI
18 Orbach, M. J., Farrall, L., Sweigard, J. A., Chumley, F. G. and Valent, B. 2000. A telomeric avirulence gene determines efficacy for the rice blast resistance gene Pi-ta. Plant Cell 12: 2019-2032.   DOI
19 Nishimura, M., Hayashi, N., Jwa, N. S., Lau, G. W., Hamer, J. E. and Hasebe, A. 2000. Insertion of the LINE retrotransposon MGL causes a conidiophore pattern mutation in Magnaporthe grisea. Mol. Plant-Microbe Interact. 13: 892-894.   DOI
20 Nitta, N., Farman, M. L. and Leong, S. A. 1997. Genome organization of Magnaporthe grisea: Integration of genetic maps, clustering of transposable elements and identification of genome duplication and rearrangements. Theor. Appl. Genet. 95: 20-32.   DOI
21 Colot, V., Goyon, C., Faugeron, G. and Rossignol, J. L. 1995. Methylation of repeated DNA sequences and genome stability in Ascobolus immersus. Can. J. Bot. 73: S221-S225.   DOI
22 Boeke, J. D. 1989. Transposable Elements in Saccharomyces cerevisiae. American Society for Microbiology, Washington, DC, USA.
23 Bonman, J. M., Khush, G. S. and Nelson, R. J. 1992. Breeding rice for resistance to pests. Annu. Rev. Phytopathol. 30: 507-528.   DOI
24 Bryan, G. T., Wu, K. S., Farrall, L., Jia, Y., Hershey, H. P., Mcadams, S. A. et al. 2000. tA single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pi-ta. Plant Cell 12: 2033-2046.   DOI
25 Bushman, F. 2002. Lateral DNA Transfer: Mechanisms and Consequences. Cold Spring Harber Laboratory Press, Cold Spring Harbor, NY, USA.
26 Cogoni, C. 2001. Homology-dependent gene silencing mechanisms in fungi. Annu. Rev. Microbiol. 55: 381-406.   DOI
27 Correa-Victoria, F. J. and Zeigler, R. S. 1991. Stable Resistance and Pathogenic Variability in the Rice-Pyricularia oryzae Complex. Cntro Internacional de Agricultura Tropical, CA, USA.
28 Daboussi, M. J. 1997. Fungal transposable elements and genome evolution. Genetica 100: 253-260.   DOI
29 Daboussi, M. J. and Capy, P. 2003. Transposable elements in filamentous fungi. Annu. Rev. Microbiol. 57: 275-299.   DOI
30 Dash, S. and Peterson, P. A. 1994. Frequent loss of the En transposable element efter excision and its relation to chromosome replication in maize (Zea mays L.). Genetics 136: 653-671.
31 Dean, R. A., Talbot, N. J., Ebbole, D. J., Farman, M. L., Mitchell, T. K., Orbach, M. J. et al. 2005. The genome sequence of the rice blast fungus Magnaporthe grisea. Nature 434: 980-986.   DOI
32 Sanmiguel, P. and Eveentzen, J. L. 2002. Evidence that a recent increase in maize genome size was caused by the massive amplification of intergene retrotransposon. Ann. Bot. 82: 37-44.
33 Park, S. Y., Milgroom, M. G., Han, S. S., Kang, S. and Lee, Y. H. 2008. Genetic differentiation of Magnaporthe oryzae populations from scouting plots and commercial rice fields in Korea. Phytopathology 98: 436-442.   DOI
34 Park, S. Y., Milgroom, M. G., Han, S. S., Kang, S. and Lee, Y. H. 2003. Diversity of pathotypes and DNA fingerprint haplotypes in populations of Magnaporthe grisea in Korea over two decades. Phytopathology 93: 1378-1385.   DOI
35 Sanchez, E., Jr., Asano, K. and Sone, T. 2011. Characterization of Inago1 and Inago2 retrotransposons in Magnaporthe oryzae. J. Gen. Plant Pathol. 77: 239-242.   DOI
36 Selker, E. U. 1999. Epigenetic phenomena in filamentous fungi: Useful paradigms or repeated-induced confusion? Trends Genet. 13: 296-301.
37 Valent, B. and Chumley, F. G. 1994. Rice Blast Disease. CAB International, Wallingford, UK.
38 Shull, V. and Hamer, J. E. 1996. Rearrangements at a DNA-fingerprint locus in the rice blast fungus. Curr. Genet. 30: 263-271.   DOI
39 Sone, T., Suto, M. and Tomita, F. 1993. Host species specific repetitive DNA sequence in the genome of Magnaporthe grisea, the rice blast fungus. Biosci. Biotechnol. Biochem. 57: 1228-1230.   DOI
40 Suzuki, F., Arai, M. and Yamaguchi, J. 2006. DNA fingerprinting of Pyricularia grisea by rep-PCR using a single primer based on the terminal inverted repeat from either of the transposable elements Pot2 and MGR586. J. Gen. Plant. Pathol. 72: 314-317.   DOI
41 Wicker, T., Sabot, F., Hua-Van, A., Bennetzen, J. L., Capy, P., Chalhoub, B. et al. 2007. A unified classification system for eukaryotic transposable elements. Nat. Rev. Genet. 8: 973-982.   DOI
42 Farman, M. L., Eto, Y., Nakao, T., Tosa, Y., Nakayashiki, H., Mayama, S. et al. 2002. Analysis of the structure of the AVR1-CO39 avirulence locus in virulent rice-infecting isolates of Magnaporthe grisea. Mol. Plant-Microbe Interact. 15: 6-16.   DOI
43 Decaris, B., Francou, F., Lefort, C. and Rizet, G. 1978. Unstable ascospore color mutants of Ascobolus immersus. Mol. Gen. Genet. 162: 69-81.   DOI
44 Devos, K. M., Brown, J. K. and Bennetzen, J. L. 2002. Genome size reduction through illegitimate recombination counteracts genome expansion in Arabidopsis. Genome Res. 12: 1075-1079.   DOI
45 Dobinson, K. F., Harris, R. E. and Hamer, J. E. 1993. Grasshopper, a long terminal repeat (LTR) retroelement in the phytopathogenic fungus Magnaporthe grisea. Mol. Plant-Microbe Interact. 6: 114-126.   DOI
46 Farman, M. L., Jackson, V., Iqbal, M. P. and Leong, S. A. 1996a. MAGGY, a retrotransposon in the genome of the rice blast fungus Magnaporthe grisea. Mol. Gen. Genet. 251: 665-674.
47 Farman, M. L., Taura, S. and Leong, S. A. 1996b. The Magnaporthe grisea DNA fingerprinting probe MGR586 contains the 3' end of an inverted repeat transposon. Mol. Plant Pathol. 251: 675-681.
48 Faugeron, G. 2000. Diversity of homology-dependent gene silencing strategies in fungi. Curr. Opin. Microbiol. 3: 144-148.   DOI
49 Favaro, L. C. L., Araujo, W. L., Azevedo, J. L. and Paccola-Meirelles, L. D. 2005. The biology and potential for genetic research of transposable elements in filamentous fungi. Genet. Mol. Biol. 28: 804-813.   DOI
50 Zeigler, R. S., Leong, S. A. and Teng, P. S. 1994. Rice Blast Disease. CAB International, Wallingford, UK.
51 Zhou, E., Jia, Y., Singh, P., Correll, J. C. and Lee, F. N. 2007. Instability of the Magnaporthe oryzae avirulence gene AVR-Pita alters virulence. Fungal Genet. Biol 44: 1024-1034.   DOI
52 Zhu, P. and Oudemans, P. V. 2000. A long terminal repeat retrotransposon Cgret from the phytopathogenic fungus Colletotrichum gloeosporioides on cranberry. Curr. Genet. 38: 241-247.   DOI
53 Havecker, E. R., Gao, X. and Voytas, D. F. 2004. The diversity of LTR retrotransposons. Genome Biol. 5: 225.   DOI
54 Fedoroff, N. V. 1989. Maize Transposable Elements. American Society for Microbiology, Washington, DC, USA.
55 Feschotte, C., Jiang, N. and Wessler, S. R. 2002. Plant transposable elements: where genetics meets genomics. Nat. Rev. Genet. 3: 329-341.
56 Winston, F., Chaleff, D. T., Valent, B. and Fink, G. R. 1984. Mutations affecting Ty-mediated expression of the HIS4 gene of Saccharomyces cerevisiae. Genetics 107: 179-197.
57 Fudal, I., Bohnert, H. U., Tharreau, D. and Lebrun, M. H. 2005. Transposition of MINE, a composite retrotransposon, in the avirulence gene ACE1 of the rice blast fungus Magnaporthe grisea. Fungal Genet. Biol. 42: 761-772.   DOI
58 George, M. L., Nelson, R. J., Zeigler, R. S. and Leung, H. 1998. Rapid population analysis of Magnaporthe grisea by using rep-PCR and endogenous repetitive DNA sequences. Phytopathology 88: 223-229.   DOI
59 Gilson, E., Clement, J. M., Brutlag, D. and Hofnung, M. 1984. A family of dispersed repetitive extragenic palindromic DNA sequences in E. coli. EMBO J. 3: 1417-1421.
60 Hamer, J. E., Farrall, L., Orbach, M. J., Valent, B. and Chumley, F. G. 1989. Host species-specific conservation of a family of repeated DNA sequences in the genome of a fungal plant pathogen. Proc. Natl. Acad. Sci. U.S.A. 86: 9981-9985.   DOI
61 Ikeda, K., Nakayashiki, H., Takagi, M., Tosa, Y. and Mayama, S. 2001. Heat shock, copper sulfate and oxidative stress activate the retrotransposon MAGGY resident in the plant pathogenic fungus Magnaporthe grisea. Mol. Gen. Genet. 266: 318-325.   DOI
62 Javan-Nikkhah, M., Mcdonald, B., Banke, S. and Hedjaroude, G. 2004. Genetic structure of Iranian Pyricularia grisea populations based on rep-PCR fingerprinting. Eur. J. Plant Pathol. 110: 909-919.   DOI
63 Kachroo, P., Leong, S. A. and Chattoo, B. B. 1995. Mg-SINE: a short interspersed nuclear element from the rice blast fungus, Magnaporthe grisea. Proc. Natl. Acad. Sci. U.S.A. 92: 11125-11129.   DOI
64 Jia, Y., Mcadams, S. A., Bryan, G. T., Hershey, H. P. and Valent, B. 2000. Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. EMBO J. 19: 4004-4014.   DOI
65 Finnegan, D. J. 1989. Eukaryotic transposable elements and genome evolution. Trends Genet. 5: 103-107.   DOI
66 Jordan, I. K. and Mcdonald, J. F. 1999. Tempo and mode of Ty element evolution in Saccharomyces cerevisiae. Genetics 151: 1341-1351.
67 Kachroo, P., Ahuja, M., Leong, S. A. and Chattoo, B. B. 1997. Organisation and molecular analysis of repeated DNA sequences in the rice blast fungus Magnaporthe grisea. Curr. Genet. 31: 361-369.   DOI
68 Kachroo, P., Leong, S. A. and Chattoo, B. B. 1994. Pot2, an inverted repeat transposon from the rice blast fungus Magnaporthe grisea. Mol. Gen. Genet. 245: 339-348.   DOI
69 Kang, S. 2001. Organization and distribution pattern of MGLR-3, a novel retrotransposon in the rice blast fungus Magnaporthe grisea. Fungal Genet. Biol. 32: 11-19.   DOI
70 Kang, S., Lebrun, M. H., Farrall, L. and Valent, B. 2001. Gain of virulence caused by insertion of a Pot3 transposon in a Magnaporthe grisea virulence gene. Mol. Plant-Microbe Interact. 14: 671-674.   DOI
71 Kang, S., Sweigard, J. A. and Valent, B. 1995. The PWL host specificity gene family in the blast fungus Magnaporthe grisea. Mol. Plant Microbe Interact. 8: 939-948.   DOI
72 Kito, H., Takahashi, Y., Sato, J., Fukiya, S., Sone, T. and Tomita, F. 2003. Occan, a novel transposon in the Fot1 family, is ubiquitously found in several Magnaporthe grisea isolates. Curr. Genet. 42: 322-331.   DOI
73 Kempken, F. and Kuck, U. 1998. Transposons in filamentous fungifacts and perspectives. Bioessays 20: 652-659.   DOI
74 Kinsey, J. A. 1993. Transnuclear retrotransposition of the Tad element of Neurospora. Proc. Natl. Acad. Sci. U.S.A. 90: 9384-9387.   DOI