• Title/Summary/Keyword: blast load

Search Result 214, Processing Time 0.023 seconds

Determination of Blast Load on the Boreholes Wall Using Decoupled Charge (Decoupling 장전시 천공벽에 작용하는 발파하중의 산정)

  • Kim, Sang-Gyun;Lee, In-Mo;Choi, Jong-Won;Kim, Shin;Lee, Du-Wha
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.209-216
    • /
    • 1999
  • In tunneling and road cuts by blasting, it is of the utmost importance that the remaining rock is of high quality in order to avoid rockfall, rockslides and excessive maintenance work. Therefore, numerous blasting techniques which make use of decoupled charge or shock wave superposition effect have been used to control overbrake. In this paper. some approximate method for the determination of blast load according to the charge condition was introduced at first and, instrumented tests were conducted in small scale transparent material to investigate the shape and amplitude of blast load around the bore hole. Compare to the fully coupled charge, low amplitude of blast load around the bore hole was observed in the decoupled charge and explosion gas pressure was important in the shape of blast load. Therefore, quasi-static behaviour of the crack pattern was shown due to low loading rate.

  • PDF

Spectral analysis of semi-actively controlled structures subjected to blast loading

  • Ewing, C.M.;Guillin, C.;Dhakal, R.P.;Chase, J.G.
    • Structural Engineering and Mechanics
    • /
    • v.33 no.1
    • /
    • pp.79-93
    • /
    • 2009
  • This paper investigates the possibility of controlling the response of typical portal frame structures to blast loading using a combination of semi-active and passive control devices. A one storey reinforced concrete portal frame is modelled using non-linear finite elements with each column discretised into multiple elements to capture the higher frequency modes of column vibration response that are typical features of blast responses. The model structure is subjected to blast loads of varying duration, magnitude and shape, and the critical aspects of the response are investigated over a range of structural periods in the form of blast load response spectra. It is found that the shape or length of the blast load is not a factor in the response, as long as the period is less than 25% of the fundamental structural period. Thus, blast load response can be expressed strictly as a function of the momentum applied to the structure by a blast load. The optimal device arrangements are found to be those that reduce the first peak of the structural displacement and also reduce the subsequent free vibration of the structure. Semi-active devices that do not increase base shear demands on the foundations in combination with a passive yielding tendon are found to provide the most effective control, particularly if base shear demand is an important consideration, as with older structures. The overall results are summarised as response spectra for eventual potential use within standard structural design paradigms.

Residual capacity assessment of post-damaged RC columns exposed to high strain rate loading

  • Abedini, Masoud;Zhang, Chunwei
    • Steel and Composite Structures
    • /
    • v.45 no.3
    • /
    • pp.389-408
    • /
    • 2022
  • Residual capacity is defined as the load carrying capacity of an RC column after undergoing severe damage. Evaluation of residual capacity of RC columns is necessary to avoid damage initiation in RC structures. The central aspect of the current research is to propose an empirical formula to estimate the residual capacity of RC columns after undergoing severe damage. This formula facilitates decision making of whether a replacement or a repair of the damaged column is adequate for further use. Available literature mainly focused on the simulation of explosion loads by using simplified pressure time histories to develop residual capacity of RC columns and rarely simulated the actual explosive. Therefore, there is a gap in the literature concerning general relation between blast damage of columns with different explosive loading conditions for a reliable and quick evaluation of column behavior subjected to blast loading. In this paper, the Arbitrary Lagrangian Eulerian (ALE) technique is implemented to simulate high fidelity blast pressure propagations. LS-DYNA software is utilized to solve the finite element (FE) model. The FE model is validated against the practical blast tests, and outcomes are in good agreement with test results. Multivariate linear regression (MLR) method is utilized to derive an analytical formula. The analytical formula predicts the residual capacity of RC columns as functions of structural element parameters. Based on intensive numerical simulation data, it is found that column depth, longitudinal reinforcement ratio, concrete strength and column width have significant effects on the residual axial load carrying capacity of reinforced concrete column under blast loads. Increasing column depth and longitudinal reinforcement ratio that provides better confinement to concrete are very effective in the residual capacity of RC column subjected to blast loads. Data obtained with this study can broaden the knowledge of structural response to blast and improve FE models to simulate the blast performance of concrete structures.

Improved nonlinear modelling approach of simply supported PC slab under free blast load using RHT model

  • Rashad, Mohamed;Yang, T.Y.
    • Computers and Concrete
    • /
    • v.23 no.2
    • /
    • pp.121-131
    • /
    • 2019
  • Due to the heterogeneity nature of the concrete, it is difficult to simulate the hyperdynamic behaviour and crack trajectory of concrete material when subjected to explosion loads. In this paper, a 3D nonlinear numerical study was conducted to simulate the hyperdynamic behaviour of concrete under various loading conditions using Riedel-Hiermaier-Thoma (RHT) model. Detailed calibration was conducted to identify the optimal parameters for the RHT model on the material level. For the component level, the calibrated RHT parameters were used to simulate the failure behaviour of plain concrete (PC) slab under free air blast load. The response was compared with an available experimental result. The results show the proposed numerical model can accurately simulate the crack trajectory and the failure mode of the PC slab under free air blast load.

Effect of Seismic Design Details in Reinforced Concrete Beams on Blast-Resistance Performance (철근콘크리트 보의 내진 설계 상세가 폭발 저항 성능에 미치는 영향)

  • Kim, Kuk-Jae;Kim, Han-Soo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.5
    • /
    • pp.427-434
    • /
    • 2017
  • Recently, awareness of the public about the explosion damage has increased due to the increased risk of terrorism. The criteria for blast-resistance design is not sufficient in Korea, it is necessary to develop blast-resistance design for the stability and safety of building by static analysis of current blast-resistance design. In addition, as the increase of earthquake occurrence necessitates the seismic design, it is studied to judge the blast-resistance performance of members applying seismic design without blast-resistance design. Currently, the general analysis of blast load is to refer to UFC 3-340-02 manual. Blast-resistance performance was studied by applying characteristics of blast load through UFC 3-340-02 manual, beam converted into equivalent SDOF System. It is proved that blast-resistance performance is improved when seismic detail is applied considering the maximum deflection of normal, intermediate, and special moment frames.

Blast Analysis of Concrete Structure using Arbitrary Lagrangian-Eulerian Technique (Arbitrary Lagrangian-Eulerian기법을 적용한 콘크리트 구조물의 폭발해석)

  • Yi, Na-Hyun;Kim, Sung-Bae;Nam, Jin-Won;Lee, Sung-Tae;Kim, Jang-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.269-272
    • /
    • 2008
  • Blast load, an impulsive load with extremely short time duration with very high pressure, is effected by ground and air condition, weight of charge, shape and location of structure. In this study, a blast dynamic analysis for the air-structural integrated model considering dynamic properties of materials and simulation of complex blast wave propagation by Arbitrary Lagrangian- Eulerian technique is suggested to perform an accurate blast analysis of concrete structures. For the verification of the proposed blast analysis method, which is the air-structure integrated model using ALE technique, the comparison of analysis and experimental results is performed. The verification confirms that the simulation of realistic behavior of RC wall structures is possible using ALE method. Also, the example cases which have been analyzed using this method show that the estimation to the structural failure criterion for blast load failure can be represented by energy absorbtion procedure.

  • PDF

Structural Response of Offshore Plants to Risk-Based Blast Load

  • Heo, YeongAe
    • Architectural research
    • /
    • v.15 no.3
    • /
    • pp.151-158
    • /
    • 2013
  • Offshore oil and gas process plants are exposed to hazardous accidents such as explosion and fire, so that the structural components should resist such accidental loads. Given the possibilities of thousands of different scenarios for the occurrence of an accidental hazard, the best way to predict a reasonable size of a specific accidental load would be the employment of a probabilistic approach. Having the fact that a specific procedure for probabilistic accidental hazard analysis has not yet been established especially for explosion and fire hazards, it is widely accepted that engineers usually take simple and conservative figures in assuming uncertainties inherent in the procedure, resulting either in underestimation or more likely in overestimation in the topside structural design for offshore plants. The variation in the results of a probabilistic approach is determined by the assumptions accepted in the procedures of explosion probability computation, explosion analysis, and structural analysis. A design overpressure load for a sample offshore plant is determined according to the proposed probabilistic approach in this study. CFD analysis results using a Flame Acceleration Simulator, FLACS_v9.1, are utilized to create an overpressure hazard curve. Moreover, the negative impulse and frequency contents of a blast wave are considerably influencing structural responses, but those are completely ignored in a widely used triangular form of blast wave. An idealistic blast wave profile deploying both negative and positive pulses is proposed in this study. A topside process module and piperack with blast wall are 3D FE modeled for structural analysis using LS-DYNA. Three different types of blast wave profiles are applied, two of typical triangular forms having different impulse and the proposed load profile. In conclusion, it is found that a typical triangular blast load leads to overestimation in structural design.

On the effect of steel columns cross sectional properties on the behaviours when subjected to blast loading

  • Hadianfard, Mohammad Ali;Farahani, Ahmad;B-Jahromi, Ali
    • Structural Engineering and Mechanics
    • /
    • v.44 no.4
    • /
    • pp.449-463
    • /
    • 2012
  • For buildings subjected to blast loading, structural failure can be categorized into local failure (direct blast effects) and progressive collapse (consequential effects). In direct blast effects, the intensive blast pressures create localized failure of structural elements such as exterior columns and walls. Columns, and their behaviour, play a key role in these situations. Therefore investigating the behaviour of columns under blast loading is very important to estimate the strength, safety and reliability of the whole structure. When a building is subjected to blast loading, it experiences huge loading pressures and undergoes great displacement and plastic behaviour. In order to study the behaviour of an element under blast loading, in addition to elastic properties of materials, plastic and elastic-plastic properties of materials and sections are needed. In this paper, using analytical studies and nonlinear time-history analysis by Ansys software, the effects of shape of column sections and boundary conditions, on behaviour and local failure of steel columns under blast load are studied. This study identifies the importance of elastic-plastic properties of sections and proposes criteria for choosing the best section and boundary conditions for columns to resist blast loading.

Analytical Evaluations of the Retrofit Performances of Concrete Wall Structures Subjected to Blast Load (폭발하중을 받는 콘크리트 벽체 구조물의 보강 성능에 대한 해석적 분석)

  • Kim, Ho-Jin;Nam, Jin-Won;Kim, Sung-Bae;Kim, Jang-Ho;Byun, Keun-Joo
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.2
    • /
    • pp.241-250
    • /
    • 2007
  • In case of retrofitting a concrete structure subjected to blast load by using retrofit materials such as FRP (fiber-reinforced polymer), appropriate ductility as well as raising stiffness must be obtained. But the previous approximate and simplified models, which have been generally used in the design and analysis of structures subjected to blast load, cannot accurately consider effects on retrofit materials. Problems on the accuracy and reliability of analysis results have also been pointed out. In addition, as the response of concrete and reinforcement on dynamic load is different from that on static load, it is not appropriate to use material properties defined in the previous static or quasi-static conditions to in calculating the response on the blast load. In this study, therefore, an accurate HFPB (high fidelity physics based) finite element analysis technique, which includes material models considering strength increase, and strain rate effect on blast load with very fast loading velocity, has been suggested using LS-DYNA, an explicit analysis program. Through the suggested analysis technique, the behavior on the blast load of retrofitted concrete walls using CFRP (carbon fiber-reinforced polymer) and GFRP (glass fiber-reinforced polymer) have been analyzed, and the retrofit capacity analysis has also been carried out by comparing with the analysis results of a wall without retrofit. As a result of the analysis, the retrofit capacity showing an approximate $26{\sim}28%$ reduction of maximum deflection, according to the retrofit, was confirmed, and it is judged ate suggested analysis technique can be effectively applicable in evaluating effectiveness of retrofit materials and techniques.

Assessment of Blast-induced Vibration for the Stability of Discontinuous Rock Mass (암반절리를 고려한 발파진동 영향평가)

  • Park, Byung-Ki;Jeon, Seok-Won;Park, Gwang-Jun;Do, Deog-Soo;Kim, Tae-Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.485-492
    • /
    • 2005
  • Since blast-induced vibration may cause serious problem to the rock mass as well as the nearby structures, the prediction of blast-induced vibration and the stability evaluation must be performed before blasting activities. Dynamic analysis has been Increased recently in order to analyze the effect of the blast-induced vibration. Most of the previous studies, however, were based on the continuum analysis unable to consider rock joints which significantly affect the wave propagation and attenuation characteristics. They also adopted pressure curves estimated by theoretical or empirical equations as input detonation load, thus there were very difficult to reflect the characteristics of propagating media. In this study, therefore, we suggested a discontinuum dynamic analysis technique which uses velocity waveform obtained from a test blast as an input detonation load. A distinct element program, UDEC was used to consider the effect of rock joints. In order to verify the validity of proposed method, the test blast was simulated. The predicted results from the proposed method showed a good agreement with the measured vibration data from the test blast Through the dynamic numerical modelling on the planned road tunnel and slope, we evaluated the effect of blast-induced vibration and the stability of rock slope.