• Title/Summary/Keyword: blast experiment

Search Result 272, Processing Time 0.025 seconds

Resistance of Varieties to Rice Blast in Korea 2. Tongil Type of Rice Varieties (한국(韓國) 수도품종(手稻品種)의 도열병(稻熱病) 저항성(抵抗性)에 관(關)하여 2. 통일형(統一型) 품종(品種))

  • Choi, Jea Eul;Park, Jong Seong;Park, Nam Kyu
    • Korean Journal of Agricultural Science
    • /
    • v.16 no.2
    • /
    • pp.129-137
    • /
    • 1989
  • This experiment was undertaken to clarify derivation of resistance of Tongil type of rice varieties to rice blast in Korea and to classify Tongil type of rice varieties on the basis of their rice blast reactions in th blast nursery test. 1. The resistance of Tongil, Josaengtongil, Yeongnamjosaeng, Hwanggeumbyeo, Honamjosaeng, Noupung, Milyang 21, Milyang 22, Milyang 23, Raekyung, Manseogbyeo, Yongmunbyeo and Yongjubyeo to rice blast was derived from IR 8 or IR 24. 2. The resistance of Milyang 20, Nampungbyeo and Milyang 42, and Samseongbyeo, Seogwangbyeo, Pungsanbyeo and Shingwangbyeo to the rice blast was derived from IR 946 and IR 1539, and IR 1545, respectively. 3. The resistance of Palgwangbyeo, Sujeongbyeo, Hangangchalbyeo, Baegunchalbyeo, Samgangbyeo and Weonpungbyeo, and Taebaegbyeo and Chupungbyeo, and Kayabyeo to the rice blast was derived from IR 2061(IR 29), IR 747 and IR 32, respectively. 4. Cheongcheongbyeo, and Jungweonbyeo and Namyeongbyeo, and Changseongbyeo to the rice blast was derived from IR 2035, IR 5533, and HR 2797 and HR 1671, respectively. 5. Tongil type of rice varieties was classified into Tongil group, Milyang 30 group, Baegyangbyeo group and Taebaegbyeo group.

  • PDF

An Evaluation of Blast Resistance Performance of RC Columns According to the Shape of Cross Section (단면의 형상에 따른 철근콘크리트 기둥의 폭발저항 성능 평가)

  • Kim, Han-Soo;Park, Jae-Pyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.4
    • /
    • pp.387-394
    • /
    • 2010
  • The alternative load path method based on a column removal scenario has been commonly used to protect building structures from being progressively collapsed due to probable blast loading. However, this method yields highly conservative result when the columns still have substantial load resisting capacity after blast. In this study, the behavior of RC columns with rectangular and circular sections under the blast loading was investigated and the remaining capacity of the partially damaged columns was compared. AUTODYN which is a hydrocode for the analysis of the structure on the impact and blast loading was used for this study. The blast loading was verified with the experiment results. The analysis results showed that the circular columns are preferable to the rectangular ones in respect of the blast resistance performance.

A Study on the Effect of Admixture Types and Replacement Ratio on Hydration Heat Reduction of High-Strength Concrete (고강도 콘크리트의 수화열 저감에 미치는 혼화재 종류 및 대체율의 영향에 관한 연구)

  • Kim, Moo-Han;Choi, Se-Jin;Oh, Si-Duk;Kim, Yong-Ro;Lee, Jong-Ho
    • Journal of the Korea Institute of Building Construction
    • /
    • v.2 no.2
    • /
    • pp.145-150
    • /
    • 2002
  • The hydration of cement paste occurs when the cement is miked with water. During the hydration, hydration heat causes the thermal stress depending on the site of concrete and the cement content. Especially in the high-strength concrete, we must give care to the concrete due to its large cement content. In this study conduction calorimeter and concrete insulation hydration heat meter were used to investigation the hydration heat characteristics of cement and concrete. To reduce hydration heat of high-strength concrete, several types of replacement of fly-ash and blast-furnace slag powder were used in this experiment. As a result of this study, it was found that hydration heat of high-strength concrete was reduced by replacement of fly-ash and blast-furnace slag powder. In case of high-strength concrete using blast-furnace slag powder, the max-heat arrival time was delayed but an effect of heat reduction was lower than a case of high-strength concrete using fly-ash, because it was considered that the heat-dependence property of blast-furnace slag powder was higher than that of fly-ash.

An experimental study on the Carbonation and Drying Shrinkage of High Strength Concrete Acording to Kinds and Ratios of Mineral Admixtures (혼화재 종류 및 치환율에 따른 고강도콘크리트의 중성화와 건조수축에 관한 실험적 연구)

  • Kwon, Young-Jin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.3 no.3
    • /
    • pp.127-133
    • /
    • 2003
  • Carbonation and drying shrinkage are very important properties of concrete, that can cause concrete to lower its capacity and spall. But the research on them in high strength concrete is very poor. In this study, to estimate influences of W/B, the kind of admixture, the replacement ratio of admixture, fineness of blast furnace and etc. on drying shrinkage and carbonation, we make experiment with 3 levels(28, 35, 55%) of W/B, 3 kinds(blast-furnace slag, fly-ash, silica-fume) of admixture, 3 levels of the replacement ratio, 3 levels(4000, 6000, 8000cm2/g) of fineness of blast-furnace slag and 2 kinds of curing condition. As the results, compressive strength of concrete was decreased, as W/C was increased and the replacement ratio of admixture was increased. Drying shrinkage was increased, as W/B was higher, the replacement ratio of admixture was increased and fineness of blast-furnace slag was decreased. And carbonation was increased, as W/B ratio was higher, the replacement ratio of admixture was increased.

An Experimental Study on the Influence of Fineness of Blast Furnace Slag Powder on the Properties of High Strength Concrete (고강도콘크리트의 특성에 미치는 고로슬래그 미분말의 분말도 영향에 관한 실험적 연구)

  • Kim, Jong-Hyun;Park, Gyu-Yeon;Kim, Jae-Hwan;Lee, Sang-Soo;Song, Ha-Young;Kim, Eul-Yong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.453-456
    • /
    • 2006
  • In this study, the experiment was carried out to investigate and analyze the influence of fineness of blast furnace slag powder on the properties of high strength concrete. The main experimental variables were water/binder ratio 27.5, 31.5, 35.5(%) water content $165kg/m^3$ and mineral admixtures such as blast furnace slag powder. Even in a case where the ratio of blast furnace slag powder is 70%, using a fineness of 8000 grade afforded a higher strength development than using a plain concrete, which indicates the potential of high utilization in the future. Although it has been pointed out that the concrete using blast furnace slag powder has a problem of yielding relatively low rate of strength development in the early age, it is demonstrated that this can be resolved by using a powder with fineness greater than 6000 grade. It is considered necessary that powder fineness should be upgraded for the applications such as high performance concrete to be used in high strength required areas by considering hydration heat control and early strength requirements in the future.

  • PDF

Optimized Mixing Design of Carbon-Capturing and Sequestering Activated Blast-Furnace Slag Mortar by Response Surface Analysis (반응표면분석법에 의한 탄소포집 활성 고로슬래그 모르타르의 최적배합 도출에 관한 연구)

  • Jang, Bong Jin;Park, Cheol woo;Kim, Seung Won;Ju, Min Kwan;Park, Ki Tae;Lee, Sang Yoon
    • International Journal of Highway Engineering
    • /
    • v.15 no.6
    • /
    • pp.69-78
    • /
    • 2013
  • PURPOSES : In this study blast furnace slag, an industrial byproduct, was used with an activating chemicals, $Ca(OH)_2$ and $Na_2SiO_3$ for carbon capture and sequestration as well as strength development. METHODS : This paper presents the optimized mixing design of Carbon-Capturing and Sequestering Activated Blast-Furnace Slag Mortar. Design of experiments in order to the optimized mixing design was applied and commercial program (MINITAB) was used. Statistical analysis was used to Box-Behnken (B-B) method in response surface analysis. RESULTS : The influencing factors of experimental are water ratio, Chemical admixture ratio and Curing temperature. In the results of response surface analysis, to obtain goal performance, the optimized mixing design for Carbon-Capturing and Sequestering Activated Blast-Furnace Slag Mortar were water ratio 40%, Chemical admixture ratio 58.78% and Curing temperature of $60^{\circ}C$. CONCLUSIONS : Compared with previous studies of this experiment is to some extent the optimal combination is expected to be reliable.

A Study on Determination for Location of Localizer Antenna under Area Restrictive Conditions at Domestic P-Airport (국내 P공항의 부지 제한조건을 고려한 로컬라이저의 최적위치 선정에 관한 연구)

  • Cho, Hwan-Kee;Kim, Jong-Bum;Song, Byung-Heum
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.23 no.2
    • /
    • pp.7-14
    • /
    • 2015
  • This paper deals with an optimal determination process for the built-in location of localizer under restrictive siting area conditions of a domestic P-airport. Aerodynamic forces and moments acting on the localizer structure can be used a reference to find the safe distance from jet blast and the position at which the reasonable structural loading is applied. Wind tunnel experiment is conducted to measure aerodynamic loadings. The finite element analysis for structural deformation is employed to get the information of structural failure. A new localizer's position is determined by considering aerodynamic loading, structural strength and thermal loading due to jet blast. Deflector effect was also investigated in this study. In conclusion, the location of localizer can be placed at shorter than the current position and greatly decreased if the deflector is applied at the front of localizer.

A Study on the Fundamental Properties of Mortar Using Ground Granulated Blast Furnace Slag (고로슬래그 미분말을 사용한 모르터의 기초물성에 대한 연구)

  • 문한영;최연왕;류재석
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1992.10a
    • /
    • pp.19-24
    • /
    • 1992
  • The purpose of this study is to examine ground granulated blast furnace(GGBF) slag produced in the country for concrete additive through physical and chemical alalysis. In this study, mortar using ordinary portland cement a part of which was replaced with GGBF slag is investigated through fundamental experiment. As the result , it was found that GGBF slag increased to some extent flow value and strength of mortar.

  • PDF

A Study on the Fundamental Properties of High-Strength Concrete Using Ground Granulated Blast-Furnace Slag as an Admixture (고로슬래그 분말을 혼화재로 사용한 고강도콘크리트의 기초적 성질에 대한 연구)

  • 문한영;최연왕;문대중;송용규
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.04a
    • /
    • pp.30-35
    • /
    • 1995
  • This paper presents fundamental experiment for the properties of high performance concrete in its fresh and hardened state made with ground granulated blast-furnace (GGBF) slag. The result is that the effect of decreasing xoncrete temperature is to the mixing ratio of GGBF slag, but it presents disadvantage in the slump loss phase. In addition to, we know that the splitting tensile strength, compressive strength and elastic modulus of concrete mixed with high fineness GGBF slag are increased at age 28days.

  • PDF