• Title/Summary/Keyword: bivariate gamma function

Search Result 6, Processing Time 0.018 seconds

Use of bivariate gamma function to reconstruct dynamic behavior of laminated composite plates containing embedded delamination under impact loads

  • Lee, Sang-Youl;Jeon, Jong-Su
    • Structural Engineering and Mechanics
    • /
    • v.70 no.1
    • /
    • pp.1-11
    • /
    • 2019
  • This study deals with a method based on the modified bivariate gamma function for reconstructions of dynamic behavior of delaminated composite plates subjected to impact loads. The proposed bivariate gamma function is associated with micro-genetic algorithms, which is capable of solving inverse problems to determine the stiffness reduction associated with delamination. From computing the unknown parameters, it is possible for the entire dynamic response data to develop a prediction model of the dynamic response through a regression analysis based on the measurement data. The validity of the proposed method was verified by comparing with results employing a higher-order finite element model. Parametric results revealed that the proposed method can reconstruct dynamic responses and the stiffness reduction of delaminated composite plates can be investigated for different measurements and loading locations.

A new class of bivariate distributions with exponential and gamma conditionals

  • Gharib, M.;Mohammed, B.I.
    • International Journal of Reliability and Applications
    • /
    • v.15 no.2
    • /
    • pp.111-123
    • /
    • 2014
  • A new class of bivariate distributions is derived by specifying its conditionals as the exponential and gamma distributions. Some properties and relations with other distributions of the new class are studied. In particular, the estimation of parameters is considered by the methods of maximum likelihood and pseudolikelihood of a special case of the new class. An application using a real bivariate data is given for illustrating the flexibility of the new class in this context, and, also, for comparing the estimation results obtained by the maximum likelihood and pseudolikelihood methods.

  • PDF

Design of bivariate step-stress partially accelerated degradation test plan using copula and gamma process

  • Srivastava, P.W.;Manisha, Manisha;Agarwal, M.L.
    • International Journal of Reliability and Applications
    • /
    • v.17 no.1
    • /
    • pp.21-49
    • /
    • 2016
  • Many mechanical, electrical and electronic products have more than one performance characteristics (PCs). For example the performance degradation of rubidium discharge lamps can be characterized by the rubidium consumption or the decreasing intensity the lamp. The product may degrade due to all the PCs which may be independent or dependent. This paper deals with the design of optimal bivariate step-stress partially accelerated degradation test (PADT) with degradation paths modelled by gamma process. The dependency between PCs has been modelled through Frank copula function. In partial step-stress loading, the unit is tested at usual stress for some time, and then the stress is accelerated. This helps in preventing over-stressing of the test specimens. Failure occurs when the performance characteristic crosses the critical value the first time. Under the constraint of total experimental cost, the optimal test duration and the optimal number of inspections at each intermediate stress level are obtained using variance optimality criterion.

ON CONSTRUCTING A HIGHER-ORDER EXTENSION OF DOUBLE NEWTON'S METHOD USING A SIMPLE BIVARIATE POLYNOMIAL WEIGHT FUNCTION

  • LEE, SEON YEONG;KIM, YOUNG IK
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.28 no.3
    • /
    • pp.491-497
    • /
    • 2015
  • In this paper, we have suggested an extended double Newton's method with sixth-order convergence by considering a control parameter ${\gamma}$ and a weight function H(s, u). We have determined forms of ${\gamma}$ and H(s, u) in order to induce the greatest order of convergence and established the main theorem utilizing related properties. The developed theory is ensured by numerical experiments with high-precision computation for a number of test functions.

Evaluation of Flood Events Considering Correlation between Flood Event Attributes (홍수사상 요소의 상관성을 고려한 홍수사상의 평가)

  • Lee, Jeong Ho;Yoo, Ji Young;Kim, Tae-Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3B
    • /
    • pp.257-267
    • /
    • 2010
  • A flood event can be characterized by three attributes such as peak discharge, total flood volume, and flood duration, which are correlated each other. However, the amount of peak discharge is only used to evaluate the flood events for the hydrological plan and design. The univariate analysis has a limitation in describing the complex probability behavior of flood events. Thus, the univariate analysis cannot derive satisfying results in flood frequency analysis. This study proposed bivariate flood frequency analysis methods for evaluating flood events considering correlations among attributes of flood events. Parametric distributions such as Gumbel mixed model and bivariate gamma distribution, and a non-parametric model using a bivariate kernel function were introduced in this study. A time series of annual flood events were extracted from observations of inflow to the Soyang River Dam and the Daechung Dam, respectively. The joint probability distributions and return periods were derived from the relationship between the amount of peak discharge and the total volume of flood runoff. Applicabilities of bivariate flood frequency analysis were examined by comparing the return period acquired from the proposed bivariate analyses and the conventional univariate analysis.

Design of Random Number Generator for Simulation of Speech-Waveform Coders (음성엔코더 시뮬레이션에 사용되는 난수발생기 설계)

  • 박중후
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.2
    • /
    • pp.3-9
    • /
    • 2001
  • In this paper, a random number generator for simulation of speech-waveform coders was designed. A random number generator having a desired probability density function and a desired power spectral density is discussed and experimental results are presented. The technique is based on Sondhi algorithm which consists of a linear filter and a memoryless nonlinearity. Several methods of obtaining memoryless nonlinearities for some typical continuous distributions are discussed. Sondhi algorithm is analyzed in the time domain using the diagonal expansion of the bivariate Gaussian probability density function. It is shown that the Sondhi algorithm gives satisfactory results when the memoryless nonlinearity is given in an antisymmetric form as in uniform, Cauchy, binary and gamma distribution. It is shown that the Sondhi algorithm does not perform well when the corresponding memoryless nonlinearity cannot be obtained analytically as in Student-t and F distributions, and when the memoryless nonlinearity can not be expressed in an antisymmetric form as in chi-squared and lognormal distributions.

  • PDF