• 제목/요약/키워드: bisphenol-A

검색결과 610건 처리시간 0.022초

용존성 방류수 유기물질이 비스페놀 A의 흡착 및 에스트로겐 활성에 미치는 영향 (Effect of Dissolved Effluent Organic Matter on Adsorption and Estrogenic Activity of Bisphenol A)

  • 유지수;나주림;정진호
    • Ecology and Resilient Infrastructure
    • /
    • 제6권2호
    • /
    • pp.128-135
    • /
    • 2019
  • 본 연구는 하수종말처리장의 용존성 방류수 유기물질이 비스페놀 A (BPA)의 흡착과 에스트로겐 활성에 미치는 영향을 조사하였다. 특이적 자외선 흡수 (SUVA)와 형광 지수 (FI) 분석 결과, 방류수 유기물질은 참조물질로 사용한 스와니강 자연 유기물질과는 달리 미생물 기원의 비휴믹성 유기물질 특성을 나타내었다. Langmuir와 Freundlich 모델 모두 방류수 및 자연 유기물질에 대한 BPA의 흡착을 잘 설명하였다. 방류수 유기물질은 자연 유기물질 보다 더 높은 BPA 흡착능을 보여주었고, 이에 따라 에스트로겐 활성 역시 더 많이 감소시켰다. 이러한 결과들은 유기물질의 기원에 따라 BPA 흡착능과 에스트로겐 활성 저감이 크게 영향을 받는 다는 것을 제시한다.

국민환경보건기초조사 1~3기의 연구성과 검토 (A Review of the Literature Using the Korean National Environmental Health Survey (cycle 1-3))

  • 이승호;김진희;최윤형;김성균;이경무;박재범
    • 한국환경보건학회지
    • /
    • 제47권3호
    • /
    • pp.227-244
    • /
    • 2021
  • Objectives: The Korean National Environmental Health Survey provides representative biomonitoring data for environmental pollutants in South Korea. Over the last decade, there have been various studies published using this data. In this study, we aimed to provide information and implications by reviewing each study. Methods: We searched comprehensive electronic databases from PubMed, Google Scholar, and Naver Academic database using the key words 'Korean National Environmental Health Survey' and 'KoNEHS' through March 2021. A total of 57 studies were selected after reviewing the relevance of the data. Results: The most frequently studied pollutants were heavy metals (10), Cotinine (8), Bisphenol A (7), and Phthalates (6), in that order. In particular, Phthalates, Bisphenol A, and Parabens were often studied together (6). A decline in urinary cotinine and heavy metals in the body was shown over time among studies on exposure association. It was demonstrated that Phthalates and Bisphenol A were significantly related to obesity and diabetes from the studies of health impacts. Cross-section study design, spot urine, and insufficient health status information were mostly reported as limitations of the data. Conclusion: Since research has been focused on adults, further investigations of children and adolescents are required. In this regard, it is necessary to maintain the consistency of the data structure and provide integrated weights for all ages. In addition, it would allow the measurement of several environmental pollutants by considering subsample design. Lastly, integrated studies with multi-cycles and the health effects from co-exposure to multiple chemicals would be expected to provide important knowledge.

Bisphenol a induces reproductive dysfunction in male mice

  • Young-Joo, Yi;Malavige Romesha, Chandanee;Dong-Won, Seo;Jung-Min, Heo;Min, Cho;Sang-Myeong, Lee
    • 농업과학연구
    • /
    • 제48권4호
    • /
    • pp.935-944
    • /
    • 2021
  • It has been suggested that bisphenol A (BPA), a known endocrine disruptor, interferes with the endocrine system, causing reproductive dysfunction. Recently, BPA has been found in waste water due to incomplete sewage purification, possibly threatening health through its ingestion via tap water. In this study, young male mice (6 - 7 weeks old) were administered water containing BPA (50 mg·kg-1) for four weeks, while control mice consumed water without BPA. Serum, epididymal spermatozoa and testicular sections were assessed after sacrificing the mice on day 28. No significant differences were obtained between the groups in the body, testis and seminal vesicle weights. However, the epididymal sperm motility and count levels were significantly reduced in BPA-fed mice. Significantly higher hepatotoxicity levels were also observed in mice ingesting BPA as compared to the control mice. The level of serum testosterone was reduced, and testicular sections revealed incomplete and irregular spermatogenesis in BPA-ingested mice. The sperm proteasomal-proteolytic activity level has been implicated in sperm function and is measured in motile spermatozoa using fluorometric substrates. High ubiquitin C-terminal hydrolase activity levels were observed in the control mice without BPA. During a mating trial, a low pregnancy rate (71.4%) was observed in females mated with males who had consumed BPA (100% in the control mice). Overall, BPA adversely affected spermatogenesis and quality, as indicated by decreased sperm motility, concentration and serum testosterone levels, resulting in reduced fertility competence.

Gestational Exposure to Bisphenol A Causes DNA Hypomethylation and the Upregulation of Progesterone Receptor Expression in the Uterus in Adult Female Offspring Rats

  • Seung Gee Lee;Ji-Eun Park;Yong-Pil Cheon;Jong-Min Kim
    • 한국발생생물학회지:발생과생식
    • /
    • 제27권4호
    • /
    • pp.195-203
    • /
    • 2023
  • Exposure to environmental chemicals, including endocrine-disrupting chemicals, during the gestational period can have profound adverse effects on several organs in offspring. Bisphenol A (BPA) can infiltrate the human body through food and drinks, and its metabolites can cross both the placental and the blood-brain barriers. In this study, we investigate the effect of gestational exposure to BPA on epigenetic, biochemical, and histological modifications in the uterine tissues of F1 adult offspring rats. Pregnant rats were exposed to BPA from gestational day 8-15, and changes in global DNA methylation in uterine tissues obtained from adult offspring born to the exposed mothers were analyzed. Global DNA methylation analysis revealed that gestational exposure to BPA resulted in DNA hypomethylation in the uterus. Progesterone receptor (PR) protein expression in uterine tissues was monitored using western blot analysis, which revealed that the PR protein content was considerably higher in all BPA-exposed groups than in the control. Immunohistochemical examination for the PR revealed that intense PR-positive cells were more frequently observed in the BPA-exposed group than in the control group. To date, the evidence that the upregulation of PRs observed in the present study was caused by the non-methylation of specific PR promoter regions is lacking. Conclusively, these results indicate that exposure to BPA during gestation induces epigenetic alterations in the uteri of adult female offspring. We speculate that the global DNA hypomethylation and upregulation of the PR observed simultaneously in this study might be associated with the uterus.

임신중인 생쥐에 Bisphenol A 투여가 모체의 생식독성과 태아의 성비에 미치는 영향 (Effect of Bisphenol A Administration on Reproductive Toxicant of Dam and Sex Ratio of Pups in Pregnant Mice)

  • 박동헌;장현용;김정익;정희태;박춘근;양부근
    • Toxicological Research
    • /
    • 제21권2호
    • /
    • pp.161-165
    • /
    • 2005
  • Bisphenol A (SPA), a environmental endocrine disruptor, is considered to bind to estrogen receptors and to regulate the expressions of estrogen responsive genes. This study was to evaluate the effect of SPA administration on body weight, sex ratio and litter size on 18 days in prenatal periods, the effect of reproductive organ weight and blood hematological values on 24 days postpartum in pregnant mice. The female mice was administrated to low doses of SPA (0, 0.05, 0.5 and 5.0 mg/kg B.W.) by intraperitoneal injection in gestation days $0\~15$ with 5 times at 3 days interval. The maternal body weight, litter size and sex ratios were similar to in all experimental groups, but body weights of male and female offspring was significantly lower in 5.0mg SPA group when compared to any other groups (P<0.05). No treatment-related effects on body weight, ovary weight and blood hematological values were observed in dams on 24 days after delivery. The uterine weight in 5.0mg SPA group was slightly higher than those of any other groups, but not significantly difference. The histological evaluation of ovary in dam mice on 24 days after dilivery was not difference in all experimental groups, but the endometriosis of uterus in dam mice were significantly increased in 0.5mg SPA group when compared to control group. These results indicates that low concentration of SPA should not be considered as a selective reproductive toxicant.

Expressional Changes of Water Transport-related Molecules in the Efferent Ductules and Initial Segment of Mouse Treated with Bisphenol A-Containing Drinking Water for Two Generations

  • Han, Su-Yong;Lee, Ki-Ho
    • 한국발생생물학회지:발생과생식
    • /
    • 제17권3호
    • /
    • pp.289-297
    • /
    • 2013
  • Bisphenol A (BPA) is an estrogenic endocrine disrupter. However, depending on a way of treatment, the harmful effects of BPA have not been confirmed. Also, trans-generational effects of BPA on male reproduction are still controversial. Because the reabsorption of testicular fluid in the efferent ductules (ED) and initial segment (IS) is important for sperm maturation, the present study was designed to determine trans-generational effect of BPA administrated orally on expression of water transport-related molecules in the mouse ED and IS. Ethanol-dissolved BPA was diluted in water to be 100 ng (low), $10{\mu}g$ (medium), and $1mg/m{\ell}$ water (high). BPA-containing water was provided for two generations. Expression of ion transporters and water channels in the ED and IS were measured by relative real-time PCR analysis. In the ED, BPA treatment caused expressional increases of carbonic anhydrase II, cystic fibrosis transmembrane regulator, $Na^+/K^+$ ATPase ${\alpha}1$ subunit, and aquaporin (AQP) 1. No change of $Na^+/H^+$ exchange (NHE) 3 expression was detected. BPA treatment at medium dose resulted in an increase of AQP9 expression. In the IS, the highest expressional levels of all molecules tested were observed in medium-dose BPA treatment. Generally, high-dose BPA treatment resulted in a decrease or no change of gene expression. Fluctuation of NHE3 gene expression by BPA treatment at different concentrations was detected. These findings suggest that trans-generational exposure to BPA, even at low dose, could affect gene expression of water-transport related molecules. However, such effects of BPA would be differentially occurred in the ED and IS.

Effects of Bisphenol A on Sex Differentiation and Gonadal Development of Medaka, Oryzias latipes

  • Na, Oh-Soo;Lee, Young-Don;Baek, Hea-Ja;Kim, Hyung-Bae
    • Animal cells and systems
    • /
    • 제6권1호
    • /
    • pp.75-80
    • /
    • 2002
  • A study on the effects of bisphenol A (BPA) on sex differentiation and gonadal development in medaka, Oryzias latipes, was investigated by histological examination. The fish were exposed to aqueous solutions of BPA at nominal concentrations of 50, 100, and 200 $\mu\textrm{g}$/L from newly-hatched larvae stage to 70 d. The ovaries of female fish were composed of oocytes at the chromatin nucleolus and peri-nucleolus stages at 20 d after the exposure. The testes contained a number of spermatogonia and spermatocytes at 30 d. In the process of sex differentiation. gonadal development was not different in all experimental groups until 30 d after the exposure. At 70 d after the exposure, however, advanced development of oocytes in the ovary and inhibition of spermatogenesis in the testis were observed in the BPA-treated groups compared to the non-treated controls. More females than males were identified in the 50 and 100 $\mu\textrm{g}$/L BPA-treated groups, in comparison to the 200 $\mu\textrm{g}$/L BPA-treated group and non-treated controls. Medaka exposed to 200 $\mu\textrm{g}$/L BPA were bigger compared to other experimental groups. The present study suggests that BPA may lead to problems in either mating or sexual behavior due to the difference in growth and disparity of sexual maturation between male and female fish.

Inhalation Toxicity of Bisphenol A and Its Effect on Estrous Cycle, Spatial Learning, and Memory in Rats upon Whole-Body Exposure

  • Chung, Yong Hyun;Han, Jeong Hee;Lee, Sung-Bae;Lee, Yong-Hoon
    • Toxicological Research
    • /
    • 제33권2호
    • /
    • pp.165-171
    • /
    • 2017
  • Bisphenol A (BPA) is a monomer used in a polymerization reaction in the production of polycarbonate plastics. It has been used in many consumer products, including plastics, polyvinyl chloride, food packaging, dental sealants, and thermal receipts. However, there is little information available on the inhalation toxicity of BPA. Therefore, the aim of this study was to determine its inhalation toxicity and effects on the estrous cycle, spatial learning, and memory. Sprague-Dawley rats were exposed to 0, 10, 30, and $90mg/m^3$ BPA, 6 hr/day, 5 days/week for 8 weeks via whole-body inhalation. Mortality, clinical signs, body weight, hematology, serum chemistry, estrous cycle parameters, performance in the Morris water maze test, and organ weights, as well as gross and histopathological findings, were compared between the control and BPA exposure groups. Statistically significant changes were observed in serum chemistry and organ weights upon exposure to BPA. However, there was no BPA-related toxic effect on the body weight, food consumption, hematology, serum chemistry, organ weights, estrous cycle, performance in the Morris water maze test, or gross or histopathological lesions in any male or female rats in the BPA exposure groups. In conclusion, the results of this study suggested that the no observable adverse effect level (NOAEL) for BPA in rats is above $90mg/m^3$/6 hr/day, 5 days/week upon 8-week exposure. Furthermore, BPA did not affect the estrous cycle, spatial learning, or memory in rats.

Treatment with Phytoestrogens Reversed Triclosan and Bisphenol A-Induced Anti-Apoptosis in Breast Cancer Cells

  • Lee, Geum-A;Choi, Kyung-Chul;Hwang, Kyung-A
    • Biomolecules & Therapeutics
    • /
    • 제26권5호
    • /
    • pp.503-511
    • /
    • 2018
  • Triclosan (TCS) and bisphenol A (BPA) are endocrine-disrupting chemicals that interfere with the hormone or endocrine system and may cause cancer. Kaempferol (Kaem) and 3,3'-diindolylmethane (DIM) are phytoestrogens that play chemopreventive roles in the inhibition of carcinogenesis and cancer progression. In this study, the influence of TCS, BPA, Kaem, and DIM on proliferation and apoptotic abilities of VM7Luc4E2 breast cancer cells were examined. MTT assay revealed that TCS ($0.1-10{\mu}M$), BPA ($0.1-10{\mu}M$) and E2 ($0.01-0.0001{\mu}M$) induced significant cell proliferation of VM7Luc4E2 cells, which was restored to the control (0.1% DMSO) by co-treatment with Kaem ($30{\mu}M$) or DIM ($15{\mu}M$). Reactive oxygen species (ROS) production assays showed that TCS and BPA inhibited ROS production of VM7Luc4E2 cells similar to E2, but that co-treatment with Kaem or DIM on VM7Luc4E2 cells induced increased ROS production. Based on these results, the effects of TCS, BPA, Kaem, and DIM on protein expression of apoptosis and ROS production-related markers such as Bax and Bcl-xl, as well as endoplasmic reticulum (ER) stress-related markers such as $eIF2{\alpha}$ and CHOP were investigated by Western blot assay. The results revealed that TCS, and BPA induced anti-apoptosis by reducing ROS production and ER stress. However, Kaem and DIM effectively inhibited TCS and BPA-induced anti-apoptotic processes in VM7Luc4E2 cells. Overall, TCS and BPA were revealed to be distinct xenoestrogens that enhanced proliferation and anti-apoptosis, while Kaem and DIM were identified as natural chemopreventive compounds that effectively inhibited breast cancer cell proliferation and increased anti-apoptosis induced by TCS and BPA.

해양 녹조류 Tetraselmis suecica, 규조류 Ditylum brightwellii, 와편모조류 Prorocentrum minimum에 대한 Aroclor 1016과 비스페놀 A의 독성 효과 (Toxic effects of Aroclor 1016 and bisphenol A on marine green algae Tetraselmis suecica, diatom Ditylum brightwellii and dinoflagellate Prorocentrum minimum)

  • 비니타 에베네저;기장서
    • 미생물학회지
    • /
    • 제52권3호
    • /
    • pp.306-312
    • /
    • 2016
  • 미세조류는 수환경으로 유입되는 독성물질의 배출기준을 설정하거나 환경영향을 평가하기 위한 환경변화의 잠재적 생물지표이다. 본 논문에서 해양 미세조류인 녹조류 Tetraselmis suecica, 규조류 Ditylum brightwellii, 와편모조류 Prorocentrum minimum에 대한 내분비 교란물질(EDCs) 비스페놀 A (BPA)와 Aroclor 1016의 영향을 평가하였다. 처리한 EDCs에 대하여 각각의 종은 매우 다른 민감도 차이를 보였다. 각 종에 대한 50% 영향농도($EC_{50}$)는 Aroclor 1016가 BPA보다 더 유해하였다. 실험에 사용한 미세조류중에서 규조류 D. birghtwellii(0.037 mg/L BPA과 0.002 mg/L Aroclor 1016)가 다른 종보다 매우 민감하게 반응하는 것으로 조사되었다. 본 연구 결과는 수서생태계에로 배출되는 기준 농도 이상의 EDCs가 해양 생물에게 유해 효과가 있다는 것을 제시해 준다.