Browse > Article
http://dx.doi.org/10.7845/kjm.2016.6050

Toxic effects of Aroclor 1016 and bisphenol A on marine green algae Tetraselmis suecica, diatom Ditylum brightwellii and dinoflagellate Prorocentrum minimum  

Ebenezer, Vinitha (Department of Life Science, Sangmyung University)
Ki, Jang-Seu (Department of Life Science, Sangmyung University)
Publication Information
Korean Journal of Microbiology / v.52, no.3, 2016 , pp. 306-312 More about this Journal
Abstract
Microalgae are the potential bioindicators of environmental changes, for the environmental risk assessment as well as to set limits for toxic chemical release in the aquatic environment. Here, we evaluated the effects of two endocrine disrupting chemicals (EDCs), namely bisphenol A (BPA) and Aroclor 1016, on the green algae Tetraselmis suecica, diatom Ditylum brightwellii, and dinoflagellate Prorocentrum minimum. Each species showed wide different sensitivity ranges when exposed to these two EDCs; the 72 h effective concentration ($EC_{50}$) for these test species showed that Aroclor 1016 was more toxic than BPA. $EC_{50}$ values for the diatom D. birghtwellii were calculated at 0.037 mg/L for BPA and 0.002 mg/L for Aroclor 1016, representing it was the most sensitive when compared to the other species. In addition, these results suggest that these EDC discharge beyond these concentrations into the aquatic environments may cause harmful effect to these marine species.
Keywords
Aroclor 1016; bisphenol A; $EC_{50}$; ecotoxicity assessment; marine microalgae;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Mensink, B.J.W.G., Smit, C.E., and Montforts, M.H.M.M. 2008. Manual for summarizing and evaluating environmental aspects of plant products. RIVM report no. 601712004/2008 (accessed 22 Aug. 2016).
2 Metcalfe, C.D., Metcalfe, T.L., Kiparissis, Y., Koenig, B.G., Khan, C., and Hughes, R.J. 2001. Estrogenic potency of chemicals detected in sewage treatment plant effluents as determined by in vivo assays with Japanese medaka (Oryzias latipes). Environ. Toxicol. Chem. 20, 297-308.   DOI
3 Millan de Kuhn, M., Streb, C., Breiter, R., Richter, P., Neesse, T., and Hader, D.P. 2006. Screening for unicellular algae as possible bioassay organisms for monitoring marine water samples. Water Res. 40, 2695-2703.   DOI
4 Monro, A. 1992. What is an appropriate measure of exposure when testing drugs for carcinogenicity in rodents? Toxicol. Appl. Pharmacol. 112, 171-181.   DOI
5 Monteiro, C.M., Fonseca, S.C., Paula, M.L., and Malcata, C.F.X. 2011. Toxicity of cadmium and zinc on two microalgae, Scenedesmus obliquus and Desmodesmus pleiomorphus, from Northern Portugal. J. Appl. Phycol. 23, 97-103.   DOI
6 Muller-Feuga, A. 2000. The role of microalgae in aquaculture: situation and trends. J. Appl. Phycol. 12, 527-534.   DOI
7 Nagpal, N.K., Pommen, L.W., and Swain, L.G. 2006. Water quality: A compendium of working water quality guidelines for British Columbia. http://www.env.gov.bc.ca. (accessed 22 Aug. 2016).
8 Alexander, H.C., Dill, D.C., Smith, L.A., Guiney, P.A., and Dom, P.B. 1988. Bisphenol A: acute aquatic toxicity. Environ. Toxicol. Chem. 7, 19-26.   DOI
9 Craig, W.A., Andes, D.R., and Stamstad, T. 2010. In vivo pharmacodynamics of new lipopeptide mx-2401. Antimicrob. Agents Chemother. 54, 5092-5098.   DOI
10 Debelius, B., Forja, J.M., DelValls, A., and Lubian, L.M. 2009. Toxicity and bioaccumulation of copper and lead in five marine microalgae. Ecotoxicol. Environ. Saf. 72, 1503-1513.   DOI
11 Ebenezer, V. and Ki, J.S. 2012. Evaluation of the sub-lethal toxicity of Cu, Pb, bisphenol A and polychlorinated biphenyl to the marine dinoflagellate Cochlodinium polykrikoides. Algae 27, 63-70.   DOI
12 Ebenezer, V. and Ki, J.S. 2013a. Quantification of toxic effects of the herbicide metolachlor on marine microalgae Ditylum brightwellii (Bacillariophyceae), Prorocentrum minimum (Dinophyceae), and Tetraselmis suecica (Chlorophyceae). J. Microbiol. 51, 136-139.   DOI
13 Ebenezer, V. and Ki, J.S. 2013b. Physiological and biochemical responses of the marine dinoflagellate Prorocentrum minimum exposed to the oxidizing biocide chlorine. Ecotoxicol. Environ. Saf. 92, 129-134.   DOI
14 Fabregas, J., Herrero, C., and Veiga, M. 1984. Effect of oil and dispersant on growth and chlorophyll a content of the marine microalga Tetraselmis suecica. Appl. Environ. Microbiol. 47, 445-447.
15 Gerringa, L.J.A., Rijstenbil, J.W., Poortvleit, T.C.W., van Drie, J., and Schot, M.C. 1995. Speciation of copper and responses of the marine diatom Ditylum brightwellii upon increasing copper concentrations. Aquatic Toxicol. 31, 77-90.   DOI
16 Guo, R. and Ki, J.S. 2011. Spliced leader sequences detected in EST data of the dinoflagellates Cochlodinium polykrikoides and Prorocentrum minimum. Algae 26, 1-7.
17 Organisation for Economic Cooperation and Development (OECD). 2011. OECD Guidelines for the testing of chemicals. Freshwater algal and cyanobacteria growth inhibition test. 201. OECD Publications, Paris, France.
18 Heil, H.A., Glibert, P.A., and Fan, C. 2005. Prorocentrum minimum (Pavillard) Schiller: A review of a harmful algal bloom species of growing worldwide importance. Harmful Algae 4, 449-470.   DOI
19 Jensen, S. 1966. Report of a new chemical hazard. New Scientist 32, 612.
20 Larsson, C.M. and Tillberg, J.E. 1975. Effects of the commercial polychlorinated biphenyl mixture Aroclor 1242 on growth, viability, phosphate uptake respiration and oxygen evolution in Scenedesmus. Physiol. Plant. 33, 256-260.   DOI
21 Parsons, T.R., Maita, Y., and Lalli, C.M. 1984. A manual of chemical and biological methods for seawater analysis, pp. 184. Pergamon Press, Oxford.
22 Perez-Rama, M., Alonso, J.A., Lopez, C.H., and Vaamonde, E.T. 2002. Cadmium removal by living cells of the marine microalga Tetraselmis suecica. Bioresour. Technol. 84, 265-270.   DOI
23 Saghir, S.A., Mendrala, A.C., Bartels, M.J., Day, S.J., Hansen, S.C., Sushynski, J.M., and Bus, J.S. 2006. Strategies to assess systematic exposure of chemicals in subchronic/chronic diet and drinking water studies. Toxicol. Appl. Pharm. 211, 245-260.   DOI
24 Shi, X.L., Lepere, C., Scanlan, D.J., and Vaulot, D. 2011. Plastid 16S rRNA gene diversity among eukaryotic picophytoplankton sorted by flow cytometry from the South Pacific Ocean. PLoS One 6, e18979.   DOI
25 Tarrant, A.M. 2005. Endocrine-like signallingsignaling in cnidarians: current understanding and implications for ecophysiology. Integr. Comp. Biol. 45, 201-214.   DOI
26 Sleiderink, H.M., Oostingh, I., Goksoyr, A., and Boon, J.P. 1995. ensitivity of cytochrome P450 1A induction in dab (Limanda limanda) of different age and sex as a biomarker for environmental contaminants in the southern North Sea. Arch. Environ. Contam. Toxicol. 28, 423-430.
27 Staples, C.A., Dorn, P.B., Klecka, G.M., O'Block, S.T., and Harris, L.R. 1998. A review of the environmental fate, effects, and exposure of bisphenol A. Chemosphere 36, 2149-2173.   DOI
28 Stauber, J.L. and Davies, C.M. 2000. Use and limitations of microbial bioassays for assessing copper availability in the aquatic environment. Environ. Rev. 8, 255-301.   DOI
29 Li, R., Chen, G.Z., Tam, N.F.Y., Luan, T.G., Shin, P.K.S., Cheung, S.G., and Liu, Y. 2009. Toxicity of bisphenol A and its bioaccumulation and removal by a marine microalga Stephanodiscus hantzschii. Ecotoxicol. Environ. Saf. 72, 321-328.   DOI
30 Leitao, M.A.D.S., Cardozo, K.H.M., Pinto, E., and Colepicolo, P. 2003. PCB-induced oxidative stress in the unicellular marine dinoflagellate Lingulodinium polyedrum. Arch. Environ. Contam. Toxicol. 45, 59-65.   DOI
31 Liu, G., Chai, X., Shao, Y., Hu, L., Xie, Q., and Wu, H. 2011. Toxicity of copper, lead, and cadmium on the motility of two marine microalgae Isochrysis galbana and Tetraselmis chui. J. Environ. Sci. (China) 23, 330-335.   DOI
32 Liu, Y., Guan, Y., Gao, Q., Tam, N.F.Y., and Zhu, W. 2010. Cellular responses, biodegradation and bioaccumulation of endocrine disrupting chemicals in marine diatom Navicula incerta. Chemosphere 80, 592-599.   DOI
33 Mayer, P., Sorensensen, B.H., Sijm, D.T.H.M., and Nyholm, N. 1998. Toxic cell concentrations of three PCB congeners in the green algae. Environ. Toxicol. Chem. 17, 1848-1851.   DOI