DOI QR코드

DOI QR Code

Toxic effects of Aroclor 1016 and bisphenol A on marine green algae Tetraselmis suecica, diatom Ditylum brightwellii and dinoflagellate Prorocentrum minimum

해양 녹조류 Tetraselmis suecica, 규조류 Ditylum brightwellii, 와편모조류 Prorocentrum minimum에 대한 Aroclor 1016과 비스페놀 A의 독성 효과

  • Received : 2016.08.29
  • Accepted : 2016.09.26
  • Published : 2016.09.30

Abstract

Microalgae are the potential bioindicators of environmental changes, for the environmental risk assessment as well as to set limits for toxic chemical release in the aquatic environment. Here, we evaluated the effects of two endocrine disrupting chemicals (EDCs), namely bisphenol A (BPA) and Aroclor 1016, on the green algae Tetraselmis suecica, diatom Ditylum brightwellii, and dinoflagellate Prorocentrum minimum. Each species showed wide different sensitivity ranges when exposed to these two EDCs; the 72 h effective concentration ($EC_{50}$) for these test species showed that Aroclor 1016 was more toxic than BPA. $EC_{50}$ values for the diatom D. birghtwellii were calculated at 0.037 mg/L for BPA and 0.002 mg/L for Aroclor 1016, representing it was the most sensitive when compared to the other species. In addition, these results suggest that these EDC discharge beyond these concentrations into the aquatic environments may cause harmful effect to these marine species.

미세조류는 수환경으로 유입되는 독성물질의 배출기준을 설정하거나 환경영향을 평가하기 위한 환경변화의 잠재적 생물지표이다. 본 논문에서 해양 미세조류인 녹조류 Tetraselmis suecica, 규조류 Ditylum brightwellii, 와편모조류 Prorocentrum minimum에 대한 내분비 교란물질(EDCs) 비스페놀 A (BPA)와 Aroclor 1016의 영향을 평가하였다. 처리한 EDCs에 대하여 각각의 종은 매우 다른 민감도 차이를 보였다. 각 종에 대한 50% 영향농도($EC_{50}$)는 Aroclor 1016가 BPA보다 더 유해하였다. 실험에 사용한 미세조류중에서 규조류 D. birghtwellii(0.037 mg/L BPA과 0.002 mg/L Aroclor 1016)가 다른 종보다 매우 민감하게 반응하는 것으로 조사되었다. 본 연구 결과는 수서생태계에로 배출되는 기준 농도 이상의 EDCs가 해양 생물에게 유해 효과가 있다는 것을 제시해 준다.

Keywords

References

  1. Alexander, H.C., Dill, D.C., Smith, L.A., Guiney, P.A., and Dom, P.B. 1988. Bisphenol A: acute aquatic toxicity. Environ. Toxicol. Chem. 7, 19-26. https://doi.org/10.1002/etc.5620070104
  2. Craig, W.A., Andes, D.R., and Stamstad, T. 2010. In vivo pharmacodynamics of new lipopeptide mx-2401. Antimicrob. Agents Chemother. 54, 5092-5098. https://doi.org/10.1128/AAC.00238-10
  3. Debelius, B., Forja, J.M., DelValls, A., and Lubian, L.M. 2009. Toxicity and bioaccumulation of copper and lead in five marine microalgae. Ecotoxicol. Environ. Saf. 72, 1503-1513. https://doi.org/10.1016/j.ecoenv.2009.04.006
  4. Ebenezer, V. and Ki, J.S. 2012. Evaluation of the sub-lethal toxicity of Cu, Pb, bisphenol A and polychlorinated biphenyl to the marine dinoflagellate Cochlodinium polykrikoides. Algae 27, 63-70. https://doi.org/10.4490/algae.2012.27.1.063
  5. Ebenezer, V. and Ki, J.S. 2013a. Quantification of toxic effects of the herbicide metolachlor on marine microalgae Ditylum brightwellii (Bacillariophyceae), Prorocentrum minimum (Dinophyceae), and Tetraselmis suecica (Chlorophyceae). J. Microbiol. 51, 136-139. https://doi.org/10.1007/s12275-013-2114-0
  6. Ebenezer, V. and Ki, J.S. 2013b. Physiological and biochemical responses of the marine dinoflagellate Prorocentrum minimum exposed to the oxidizing biocide chlorine. Ecotoxicol. Environ. Saf. 92, 129-134. https://doi.org/10.1016/j.ecoenv.2013.03.014
  7. Fabregas, J., Herrero, C., and Veiga, M. 1984. Effect of oil and dispersant on growth and chlorophyll a content of the marine microalga Tetraselmis suecica. Appl. Environ. Microbiol. 47, 445-447.
  8. Gerringa, L.J.A., Rijstenbil, J.W., Poortvleit, T.C.W., van Drie, J., and Schot, M.C. 1995. Speciation of copper and responses of the marine diatom Ditylum brightwellii upon increasing copper concentrations. Aquatic Toxicol. 31, 77-90. https://doi.org/10.1016/0166-445X(94)00053-S
  9. Guo, R. and Ki, J.S. 2011. Spliced leader sequences detected in EST data of the dinoflagellates Cochlodinium polykrikoides and Prorocentrum minimum. Algae 26, 1-7.
  10. Heil, H.A., Glibert, P.A., and Fan, C. 2005. Prorocentrum minimum (Pavillard) Schiller: A review of a harmful algal bloom species of growing worldwide importance. Harmful Algae 4, 449-470. https://doi.org/10.1016/j.hal.2004.08.003
  11. Jensen, S. 1966. Report of a new chemical hazard. New Scientist 32, 612.
  12. Larsson, C.M. and Tillberg, J.E. 1975. Effects of the commercial polychlorinated biphenyl mixture Aroclor 1242 on growth, viability, phosphate uptake respiration and oxygen evolution in Scenedesmus. Physiol. Plant. 33, 256-260. https://doi.org/10.1111/j.1399-3054.1975.tb03165.x
  13. Leitao, M.A.D.S., Cardozo, K.H.M., Pinto, E., and Colepicolo, P. 2003. PCB-induced oxidative stress in the unicellular marine dinoflagellate Lingulodinium polyedrum. Arch. Environ. Contam. Toxicol. 45, 59-65. https://doi.org/10.1007/s00244-002-0208-5
  14. Li, R., Chen, G.Z., Tam, N.F.Y., Luan, T.G., Shin, P.K.S., Cheung, S.G., and Liu, Y. 2009. Toxicity of bisphenol A and its bioaccumulation and removal by a marine microalga Stephanodiscus hantzschii. Ecotoxicol. Environ. Saf. 72, 321-328. https://doi.org/10.1016/j.ecoenv.2008.05.012
  15. Liu, G., Chai, X., Shao, Y., Hu, L., Xie, Q., and Wu, H. 2011. Toxicity of copper, lead, and cadmium on the motility of two marine microalgae Isochrysis galbana and Tetraselmis chui. J. Environ. Sci. (China) 23, 330-335. https://doi.org/10.1016/S1001-0742(10)60410-X
  16. Liu, Y., Guan, Y., Gao, Q., Tam, N.F.Y., and Zhu, W. 2010. Cellular responses, biodegradation and bioaccumulation of endocrine disrupting chemicals in marine diatom Navicula incerta. Chemosphere 80, 592-599. https://doi.org/10.1016/j.chemosphere.2010.03.042
  17. Mayer, P., Sorensensen, B.H., Sijm, D.T.H.M., and Nyholm, N. 1998. Toxic cell concentrations of three PCB congeners in the green algae. Environ. Toxicol. Chem. 17, 1848-1851. https://doi.org/10.1002/etc.5620170927
  18. Mensink, B.J.W.G., Smit, C.E., and Montforts, M.H.M.M. 2008. Manual for summarizing and evaluating environmental aspects of plant products. RIVM report no. 601712004/2008 (accessed 22 Aug. 2016).
  19. Metcalfe, C.D., Metcalfe, T.L., Kiparissis, Y., Koenig, B.G., Khan, C., and Hughes, R.J. 2001. Estrogenic potency of chemicals detected in sewage treatment plant effluents as determined by in vivo assays with Japanese medaka (Oryzias latipes). Environ. Toxicol. Chem. 20, 297-308. https://doi.org/10.1002/etc.5620200210
  20. Millan de Kuhn, M., Streb, C., Breiter, R., Richter, P., Neesse, T., and Hader, D.P. 2006. Screening for unicellular algae as possible bioassay organisms for monitoring marine water samples. Water Res. 40, 2695-2703. https://doi.org/10.1016/j.watres.2006.04.045
  21. Monro, A. 1992. What is an appropriate measure of exposure when testing drugs for carcinogenicity in rodents? Toxicol. Appl. Pharmacol. 112, 171-181. https://doi.org/10.1016/0041-008X(92)90185-U
  22. Monteiro, C.M., Fonseca, S.C., Paula, M.L., and Malcata, C.F.X. 2011. Toxicity of cadmium and zinc on two microalgae, Scenedesmus obliquus and Desmodesmus pleiomorphus, from Northern Portugal. J. Appl. Phycol. 23, 97-103. https://doi.org/10.1007/s10811-010-9542-6
  23. Muller-Feuga, A. 2000. The role of microalgae in aquaculture: situation and trends. J. Appl. Phycol. 12, 527-534. https://doi.org/10.1023/A:1008106304417
  24. Nagpal, N.K., Pommen, L.W., and Swain, L.G. 2006. Water quality: A compendium of working water quality guidelines for British Columbia. http://www.env.gov.bc.ca. (accessed 22 Aug. 2016).
  25. Organisation for Economic Cooperation and Development (OECD). 2011. OECD Guidelines for the testing of chemicals. Freshwater algal and cyanobacteria growth inhibition test. 201. OECD Publications, Paris, France.
  26. Parsons, T.R., Maita, Y., and Lalli, C.M. 1984. A manual of chemical and biological methods for seawater analysis, pp. 184. Pergamon Press, Oxford.
  27. Perez-Rama, M., Alonso, J.A., Lopez, C.H., and Vaamonde, E.T. 2002. Cadmium removal by living cells of the marine microalga Tetraselmis suecica. Bioresour. Technol. 84, 265-270. https://doi.org/10.1016/S0960-8524(02)00045-7
  28. Saghir, S.A., Mendrala, A.C., Bartels, M.J., Day, S.J., Hansen, S.C., Sushynski, J.M., and Bus, J.S. 2006. Strategies to assess systematic exposure of chemicals in subchronic/chronic diet and drinking water studies. Toxicol. Appl. Pharm. 211, 245-260. https://doi.org/10.1016/j.taap.2005.06.010
  29. Shi, X.L., Lepere, C., Scanlan, D.J., and Vaulot, D. 2011. Plastid 16S rRNA gene diversity among eukaryotic picophytoplankton sorted by flow cytometry from the South Pacific Ocean. PLoS One 6, e18979. https://doi.org/10.1371/journal.pone.0018979
  30. Sleiderink, H.M., Oostingh, I., Goksoyr, A., and Boon, J.P. 1995. ensitivity of cytochrome P450 1A induction in dab (Limanda limanda) of different age and sex as a biomarker for environmental contaminants in the southern North Sea. Arch. Environ. Contam. Toxicol. 28, 423-430.
  31. Staples, C.A., Dorn, P.B., Klecka, G.M., O'Block, S.T., and Harris, L.R. 1998. A review of the environmental fate, effects, and exposure of bisphenol A. Chemosphere 36, 2149-2173. https://doi.org/10.1016/S0045-6535(97)10133-3
  32. Stauber, J.L. and Davies, C.M. 2000. Use and limitations of microbial bioassays for assessing copper availability in the aquatic environment. Environ. Rev. 8, 255-301. https://doi.org/10.1139/a00-010
  33. Tarrant, A.M. 2005. Endocrine-like signallingsignaling in cnidarians: current understanding and implications for ecophysiology. Integr. Comp. Biol. 45, 201-214. https://doi.org/10.1093/icb/45.1.201

Cited by

  1. CpMCA , a novel metacaspase gene from the harmful dinoflagellate Cochlodinium polykrikoides and its expression during cell death vol.651, 2018, https://doi.org/10.1016/j.gene.2018.02.002
  2. 6.0 K microarray reveals differential transcriptomic responses in the dinoflagellate Prorocentrum minimum exposed to polychlorinated biphenyl (PCB) vol.195, 2018, https://doi.org/10.1016/j.chemosphere.2017.12.066
  3. The Effect of Bisphenol A on Growth, Morphology, Lipid Peroxidation, Antioxidant Enzyme Activity, and PS II in Cylindrospermopsis raciborskii and Scenedesmus quadricauda 2017, https://doi.org/10.1007/s00244-017-0454-1
  4. A Novel Cyclophilin B Gene in the Red Tide Dinoflagellate Cochlodinium polykrikoides: Molecular Characterizations and Transcriptional Responses to Environmental Stresses vol.2017, 2017, https://doi.org/10.1155/2017/4101580
  5. Biodegradation and detoxification of bisphenol A by bacteria isolated from desert soils vol.9, pp.6, 2019, https://doi.org/10.1007/s13205-019-1756-y
  6. Biotechnological Potential of Korean Marine Microalgal Strains and Its Future Prospectives vol.41, pp.4, 2016, https://doi.org/10.4217/opr.2019.41.4.289
  7. The herbicide alachlor severely affects photosystem function and photosynthetic gene expression in the marine dinoflagellate Prorocentrum minimum vol.55, pp.7, 2016, https://doi.org/10.1080/03601234.2020.1755198