• Title/Summary/Keyword: biosorption technology

Search Result 56, Processing Time 0.021 seconds

Bioadsorbents for remediation of heavy metals: Current status and their future prospects

  • Gupta, Vinod Kumar;Nayak, Arunima;Agarwal, Shilpi
    • Environmental Engineering Research
    • /
    • v.20 no.1
    • /
    • pp.1-18
    • /
    • 2015
  • The biosorption process has been established as characteristics of dead biomasses of both cellulosic and microbial origin to bind metal ion pollutants from aqueous suspension. The high effectiveness of this process even at low metal concentration, similarity to ion exchange treatment process, but cheaper and greener alternative to conventional techniques have resulted in a mature biosorption technology. Yet its adoption to large scale industrial wastewaters treatment has still been a distant reality. The purpose of this review is to make in-depth analyses of the various aspects of the biosorption technology, staring from the various biosorbents used till date and the various factors affecting the process. The design of better biosorbents for improving their physico-chemical features as well as enhancing their biosorption characteristics has been discussed. Better economic value of the biosorption technology is related to the repeated reuse of the biosorbent with minimum loss of efficiency. In this context desorption of the metal pollutants as well as regeneration of the biosorbent has been discussed in detail. Various inhibitions including the multi mechanistic role of the biosorption technology has been identified which have played a contributory role to its non-commercialization.

Biosorption of Rhodamine B onto Waste Activated Sludge: Equilibrium and Kinetic Modelling (폐 활성슬러지를 이용한 Rhodamine B의 생체흡착:흡착평혀여 및 흡착속도 모델링)

  • Lee Chang-Han;Ahn Kab-Hwan
    • Journal of Environmental Science International
    • /
    • v.14 no.9
    • /
    • pp.881-888
    • /
    • 2005
  • The biosorption of dye, Rhodamine B(Rh-B), onto waste activated sludge was investigated. The biosorption capacity and contact time were shown as a simulation of dye adsorption equilibrium and kinetics models. We observed that biosorption of Rh-B occurred rapidly less than 4 hr. These experimental data could be better fitted by a pseudo-second-order rate equation than a pseudo-first-order rate equation. The equilibrium dependence between biosorption capacity and initial concentration of Rh-B was estimated and it was found that the equilibrium data of biosorption were fitted by four kinds of model such as Langmuir, Freundlich, Redlich-Peterson, and Koble-Corrigan model. The average percentage errors, $\varepsilon(\%)$, observed between experimental and predicted values by above each model were $21.19\%,\;9.97\%,\;10.10\%\;and\;11.76\%$, respectively, indicating that Freundlich and Redlich-Peterson model could be fitted more accrately than other models.

Characteristics of Carbon Source Biosorption (유기물 생흡착 현상에 관한 기초연구)

  • Lee, Dong-Hoon;Lee, Doo-Jin;Kim, Seung-Jin;Chung, Jonwook;Bae, Wookeun
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.1
    • /
    • pp.23-29
    • /
    • 2006
  • Biosorption technology was used to remove hazardous materials from wastewater, herbicide, heavy metals, and radioactive compounds, based on binding capacities of various biological materials. Biosorption process can be explained by two steps; the first step is that target contaminants is in contact with microorganisms and the second is that the adsorbed target contaminants is infiltrated with inner cell through metabolically mediated or physico-chemical pathways of uptake. Until recently, no information is available to explain the definitive mechanism of biosorption. The purpose of this study is to evaluate biosorption capabilities of organic matters using activated sludge and to investigate affecting factors upon biosorption. Over 49% of organic matter could be removed by positive biosorption reaction under anoxic condition within 10 minutes. The biosorption capacities were constant at around 50 mg-COD/mg-MLSS for all batch experiments. As starvation time increased under aerobic or anaerobic conditions, biosorption capacity increased since higher stressed microorganisms by starvation was more brisk. Starvation stress of microorganisms was higher at aerobic condition than anaerobic one. As temperature increased or easily biodegradable carbon sources were used, biosorption capacities increased. Consequently, biosorption can be estimated by biological -adsorbed capability of the bacterial cell-wall and we can achieve the cost-effective and non -residual denitrification with applying biosorption to the bio-reduction of nitrate.

Biosorption and Elution of Lead by Undaria pinnatifida

  • Suh, Jung-Ho;Suh, Myung-Gyo;Lee, Yong-Hee;Lee, Kook-Eui;Kim, Bong-Seob
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2003.06a
    • /
    • pp.111-115
    • /
    • 2003
  • Biosorption of lead by marine algae, Undaria pinnatifida, was examined. The biosorption capacity of lead by U. pinnatifida was above 30% of its own weight and proportional to the initial lead concentration. However, the opposite result was shown in different initial weight of biomass. The mechanism of biosorption was accorded to the ion exchange process.

  • PDF

Biosorption of Lead ions onto Laminaria japonica and Kjellmaniella crassifolia : Equilibrium and Kinetic Modelling (Laminaria japonica와 Kjellmaniella crassifolia를 이용한 Pb의 생체흡착 : 흡착속도 및 흡착평형 모델링)

  • Lee, Chang-Han;Ahn, Kab-Hwan
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.11
    • /
    • pp.1238-1243
    • /
    • 2005
  • The batch experiments of biosorption were carried out for the removal of lead ion from metal solution using Laminaria japonica and Kjellmaniella crassifolia, two species of marine algaes as biosorbent. We have investigated biosorption kinetics and equilibrium of lead by using marine algaes. We observed that biosorption of lead occurred very rapidly by marine algaes ; the biosorption reached equilibrium less than 2 hr. These experimental data could be accurately described by a pseudo-second-order rate equation, obtaining values between $0.883{\times}10^{-3}$ and $0.628{\times}10^{-3}\;g/mg/min$ for the biosorption rate constant $k_{2,ad}$. It could be described with Langmuir, Redlich-Peterson, and Koble-Corrigan(Langmuir-Freundlich) equation. The biosorption capacity by L. japonica and K. crassifolia were in the sequence of Pb>Cd>Cr>Cu and Pb>Cu>Cd>Cr, respectively. The biosorption capacity of L. japonica were increased with pH increasing.

Bacteria and Fungi as Alternatives for Remediation of Water Resources Polluting Heavy Metals

  • Joo, Jin-Ho;Hussein, Khalid A.;Hassan, Sedky H.A.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.4
    • /
    • pp.600-614
    • /
    • 2011
  • Classical methods which used for removal of heavy metals from contaminated water are adsorption, precipitation, coagulation, ion exchange resin, evaporation, and membrane processes. Microbial biosorption can be used for the removal of contaminated waters with pollutants such as heavy metals and dyes which are not easily biodegradable. Microbial biosorbents are inexpensive, eco friendly and more effective for the removal of toxic metals from aqueous solution. In this review, the bacterial and fungal abilities for heavy metals ions removal are emphasized. Environmental factors which affect biosorption process are also discussed. A detailed description for the most common isotherm and kinetic models are presented. This article reviews the achievements and the current status of bacterial and fungal biosorption technology for heavy metals removal and provides insights for further researches.

Biosorption of Heavy Metals by Biomass of Seaweeds, Laminaria species, Ecklonia stolonifera, Gelidium amansii and Undaria pinnatifida (해조류(Laminaria species, Ecklonia stolonifera, Gelidium amansii, Undaria pinnatifida)에 의한 중금속 생물흡착 특성)

  • Choi, Ik-Won;Kim, Sung-Un;Seo, Dong-Cheol;Kang, Byung-Hwa;Sohn, Bo-Kyoon;Rim, Yo-Sup;Heo, Jong-Soo;Cho, Ju-Sik
    • Korean Journal of Environmental Agriculture
    • /
    • v.24 no.4
    • /
    • pp.370-378
    • /
    • 2005
  • The characteristics of heavy metal biosorption on the seaweeds were investigated to develop a biological treatment technology for wastewater polluted with heavy metals. The heavy metal biosorption on seaweeds ranked in the tallowing order: U. pinnatifida$\geq$E. stolonifera$\geq$Laminaria sp.>G. amansii. The Pb was biosorbed in the range of $93{\sim}99%$, and the Cu and Cd were biosorbed in the range of $70{\sim}80%$ at the concentration of the heavy metal of $100mg/{\ell}$ respectively. The seaweed which was pretreated with $CaCl_2$ solution improved the biosorption of the heavy metals. The temperature and pH didn't affect the biosorption of heavy metals. The Langmuir isotherm reasonably fit the data of heavy metal biosorption compared to the Freundlich isotherm. The affinity of metals on the biosorption ranked in the following order: Pb>Zn>Cu>Cd. The biosorption efficiency of the heavy metals on the U. pinnatifida decreased in the multi-component rather than the single component. The heavy metals adsorbed on the U. pinnatifida were recovered using 0.3%-NTA. U. pinnatifida among the seaweed used in this work showed the best performance for the biosorption of the heavy metals.

Biosorption of Reactive Dyes using Chemically Modified Sewage Sludge (화학적으로 변형된 하수슬러지를 이용한 반응성염료의 생물흡착)

  • Han, Min-Hee;Choi, Gi-Wook;Yun, Yeoung-Sang
    • Clean Technology
    • /
    • v.13 no.3
    • /
    • pp.215-221
    • /
    • 2007
  • Biosorption is considered to be a promising alternative to replace the present methods for the treatment of dye-containing wastewater. In this study, sewage sludge was used as a biosorbent which could be one of the cheapest and most abundant biomaterials. The objective of this work is to develop a surface-modified biosorbent with enhanced sorption capacity and binding affinity. The FT-IR and potentiometric titration studies revealed that carboxyl, phosphateand amine groups played a role in binding of dye molecules. The binding sites for reactive dye Reactive Red 4 (RR 4) were identified to be amino groups present in the biomass. In this work, based on the biosorption mechanism, the performance of biosorbentcould be enhanced by the removal of inhibitory carboxyl groups from the biomass for practical application of the biosorbents. As a result, the maximum capacity of biomass was increased up to 130% and 210% of the increment of sorption capacity at pH 2 and 4, respectively. Therefore, chemically modified sewage sludge can be used as an effective and low-cost biosorbent for the removal of dyes from industrial discharges.

  • PDF

Removal, Recovery, and Process Development of Heavy Metal by Immobilized Biomass Methods (미생물 고정화법에 의한 중금속 제거, 회수 및 공정개발)

  • Ahn, Kab-Hwan;Shin, Yong-Kook;Suh, Kuen-Hack
    • Journal of Environmental Science International
    • /
    • v.6 no.1
    • /
    • pp.61-67
    • /
    • 1997
  • Heavy metal adsorption by microbial cells is an alternative to conventional methods of heavy metal removal and recovery from metal-bearing wastewater The waste Sac-chuomyces cerevisiae is an inexpensive, relatively available source of biomass for heavy metal biosorption. Biosorption was investigated by free and immobilized-S. cerevisiae. The order of biosorption capacity was Pb>Cu>Cd with batch system. The biosorption parameters had been determined for Pb with free , cells according to the Freundlich and Langmuir model. It was found that the data fitted reasonably well to the Freundlich model. The selective uptake of immobilized-S. cerevisiae was observed when all the metal ions were dissolved in a mixed metals solution(Pb, Cu, Cr and Cd). The biosorption of mixed metals solution by immobilized-cell was studied in packed bed reactor. The Pb uptake was Investigated in particular, as it represents one of the most widely distributed heavy metals in water. We also tested the desorption of Pb from immobilized-cell by us- ing HCI, $H_2SO_4$ and EDTA.

  • PDF