• Title/Summary/Keyword: bioreactors

Search Result 192, Processing Time 0.031 seconds

Airlift Bioreactors (Airlift 생물반응기)

  • 류희옥;장용근김상돈
    • KSBB Journal
    • /
    • v.9 no.4
    • /
    • pp.347-364
    • /
    • 1994
  • Airlift bioreactors are extensively used in the fields of aerobic fermentation, animal and plant cell cultures. This review article evaluates the present research activities in the field of airlift bioreactors. The published research works on the design parameters such as types, location and properties of gas sparser, hydrodynamic properties such as phase holdups mixing, liquid circulation rate, mass and heat transfer rates are summarized. Also, recommendations are presented for designing airlift bioreactors.

  • PDF

Characterization and Composition of Ammonia-Oxidizing Bacterial Community in Full- Scale Wastewater Treatment Bioreactors (실규모 하수처리 생물반응기에서 발견되는 암모니아산화균 군집조성 및 특징)

  • Park, Hee-Deung
    • Korean Journal of Microbiology
    • /
    • v.45 no.2
    • /
    • pp.112-118
    • /
    • 2009
  • Ammonia-oxidizing bacteria (AOB) are chemolithoautotrophs that play a key role in nitrogen removal from advanced wastewater treatment processes. Various AOB species inhabit and their community compositions vary over time in the wastewater treatment bioreactors. In this study, a hypothesis that operational and environmental conditions affect both the community compositions and the diversity of AOB in the bioreactors was proposed. To verify the hypothesis, the clone libraries based on ammonia monooxygenase subunit A were constructed using activated sludge samples from aerobic bioreactors at the Pohang, the Palo Alto, the Nine Springs, and the Marshall wastewater treatment plants (WWTPs). In those bioreactors, AOB within the Nitrosomonas europaea, N. oligotropha, N.-like, and Nitrosospira lineages were commonly found, while AOB within the N. communis, N. marina, and N. cryotolerans lineages were rarely detected in the samples. The AOB community structures were different in the bioreactors: AOB within the N. oligotropha lineage were the major microorganisms in the Pohang, the Palo Alto, and the Marshall WWTPs, while AOB within the N. europaea lineage were dominant in the Nine Springs WWTP. The correlations between the AOB community compositions of the wastewater treatment bioreactors and their operational (HRT, SRT, and MLSS) and environmental conditions (temperature, pH, COD, $NH_3$, and $NO_3{^-}$) were evaluated using a multivariate statistical analysis called the Redundancy Analysis (RDA). As a result, COD and $NO_3{^-}$ concentrations in the bioreactors were the statistically significant variables influencing the AOB community structures in the wastewater treatment bioreactors.

Trends in Monoclonal Antibody Production Using Various Bioreactor Systems

  • Jyothilekshmi, I.;Jayaprakash, N.S.
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.3
    • /
    • pp.349-357
    • /
    • 2021
  • Monoclonal antibodies are widely used as diagnostic reagents and for therapeutic purposes, and their demand is increasing extensively. To produce these proteins in sufficient quantities for commercial use, it is necessary to raise the output by scaling up the production processes. This review describes recent trends in high-density cell culture systems established for monoclonal antibody production that are excellent methods to scale up from the lab-scale cell culture. Among the reactors, hollow fiber bioreactors contribute to a major part of high-density cell culture as they can provide a tremendous amount of surface area in a small volume for cell growth. As an alternative to hollow fiber reactors, a novel disposable bioreactor has been developed, which consists of a polymer-based supermacroporous material, cryogel, as a matrix for cell growth. Packed bed systems and disposable wave bioreactors have also been introduced for high cell density culture. These developments in high-density cell culture systems have led to the monoclonal antibody production in an economically favourable manner and made monoclonal antibodies one of the dominant therapeutic and diagnostic proteins in biopharmaceutical industry.

Treating Swine Wastewater by Anaerobic Bioreactors (혐기성 생물반응기에 의한 축산폐수의 처리)

  • Lee, Gook-Hee;Kim, Jong-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.18 no.1
    • /
    • pp.54-60
    • /
    • 1999
  • Three different types of lab-scale anaerobic bioreactors, AF and two-stage ASBF-PR and ASBF-SP, were evaluated in treating swine wastewater by operating at $1{\sim}2$ days of hydraulic retention time with increasing organic loading rate upto 6.3 $kg-COD/m^3{\cdot}d$ at $35^{\circ}C$. Seeding the anaerobic bioreactors with waste anaerobic digester sludge from a municipal wastewater treatment plant was effective and a 40-day acclimation period was required for steady-state operation. Three anaerobic bioreactors were effective in treating swine wastewater with COD removal efficiency of $66.4{\sim}84.9$% and biogas production rate of $0.333{\sim}0.796m^3/kg-COD_{removed}{\cdot}d$. Increases of organic loading rate by increasing influent COD concentration and/or decreasing hydraulic retention time caused decreases in COD removal efficiency and increases in biogas production rate. At relatively high organic loading rate employed in this study, the treatment efficiency of AF and ASBF-PR were similar but superior than that of ASBF-SP, indicating that porosity and pore size of the media packed in the bioreactors are more important factors contributing the performance of to bioreactors than specific surface area of the media. TKN in swine wastewater must be removed prior to the anaerobic processes when anaerobic process is considered as a major treatment process since influent TKN concentration of $1,540{\sim}1,870mg/L$ to the bioreactors adversely affect the activity of methanogenic bacteria, resulting in decreases of treatment efficiency and biogas production rate by 50%.

  • PDF

Comparative Evaluation of Modified Bioreactors for Enhancement of Growth and Secondary Metabolite Biosynthesis Using Panax ginseng Hairy Roots

  • Jeong, Gwi-Taek;Park, Don-Hee
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.6
    • /
    • pp.528-534
    • /
    • 2005
  • Hairy root cultures have demonstrated great promise in terms of their biosynthetic capability toward the production of secondary metabolites, but continue to constitute a major challenge with regard to large-scale cultures. In order to assess the possibility of conducting mass production of biomass, and the extraction of useful metabolites from Panax ginseng. P. ginseng hairy roots, transformed by Rhizobium rhizogenes KCTC 2744, were used in bioreactors of different types and sizes. The most effective mass production of hairy roots was achieved in several differently Sized air bubble bioreactors compared to all other bioreactor types. Hairy root growth was enhanced by aeration, and the production increased with increasing aeration rate in a 1 L bioreactor culture. It was determined that the hairy root growth rate could be substantially enhanced by increases in the aeration rate upto 0.5vvm, but at aeration rates above 0.5vvm, only slight promotions in growth rates were observed. In 20 L air bubble bioreactors, with a variety of inoculum sizes, the hairy roots exhibited the most robust growth rates with an inoculum size of 0.1% (w/v), within the range 0.1 to 0.7% (w/v). The specific growth rates of the hairy root decreased with increases in the inoculum size.

Performance Evaluation of Anaerobic Bioreactors in Treating Swine Wastewater (양돈폐수 처리를 위한 혐기성 생물반응기의 성능 비교)

  • Kim, Jong-Soo;Lee, Gook-Hee;Sa, Tongmin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.11
    • /
    • pp.2047-2058
    • /
    • 2000
  • The effects of operating parameters on performance of upflow anaerobic sludge blanket(UASB). anaerobic filter(AF), and two-stage anaerobic sludge bed filter (ASBF) bioreactors in treating swine wastewater were evaluated by operating the lab-scale bioreactors upto hydraulic retention time(HRT) of 1 day and organic loading rate (OLR) of $5.1kg-COD/m^3{\cdot}d$ for 200 days. Swine wastewaters of which characteristics were affected by types of hog raising and seasons contained high concentrations of COD, SS, and ammonia. Inoculation of the bioreactors with waste sludge from anaerobic treatment facility of local municipal wastewater treatment plant was effective in developing biomass in the bioreactors. Acclimation period of the bioreactors with swine wastewaters required approximately 40 days, but that for AF and two-stage ASBF, which were filled with media, was faster than VASB. The bioreactors showed high and stable COD removal efficiency of 77~91% at influent T-N concentrations of 370~800mg/L but low and unstable COD removal efficiency of 24~94% at influent T-N concentrations of 760~1,310mg/L. It is essential to remove ammonia prior to anaerobic treatment since the concentrations of ammonia in swine wastewaters showed toxic effects to methanogenic bacteria. The bioreactors were effective in treating swine wastewaters with COD removal efficiency of 78.9~81.5% and biogas generation rate of $0.39{\sim}0.59m^3/kg-COD_r$ at OLR of $1.1{\sim}2.2kg-COD/m^3{\cdot}d$: however, an increase of OLR by reducing HRT and increasing influent COD caused decrease of COD removal efficiency. The extent of decrease in COD removal efficiency was higher in UASB than AF and two-stage ASBF. AF and two-stage ASBF anaerobic bioreactors were effective in treating varing characteristics of swine wastewaters since they showed high and stable COD removal efficiency at high OLR due to effective retention of biomass by media and staging.

  • PDF

Performance Evaluation of Anaerobic Bioreactors and Effects of Ammonia on Anaerobic Digestion in Treating Swine Wastewaters

  • Lee, Gook-Hee;Seo, Jun-Won;Kim, Jong-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.25 no.3
    • /
    • pp.195-201
    • /
    • 2006
  • The operational characteristics of anaerobic bioreactors in treating swine wastewater were evaluated upto hydraulic retention time (HRT) of 1 day and organic loading rate (OLR) of $5.1kg-COD/m^3{\cdot}d$ for 200 days. The bioreactors were effective in treating swine wastewaters with COD removal efficiency of $78.9{\sim}81.5%$ and biogas generation of $0.39{\sim}0.59m^3/kg-COD_r$ at OLR of $1.1{\sim}2.2kg-COD/m^3{\cdot}d$. The two-stage ASBF anaerobic bioreactors was effective in treating different characteristics of swine wastewaters since they showed high and stable COD removal efficiency at high OLR due to effective retention of biomass by media and staging. The effects of ammonia on anaerobic digestion were investigated by operating two-stage ASBF reactors using swine wastewaters as influent without and with ammonia removal at HRT of $1{\sim}2$ days and OLR of $2.2{\sim}9.6kg-COD/m^3{\cdot}d$ for 250 days. The COD removal efficiency and biogas generation of two-stage ASBF reactors was decreased by increasing influent ammonia concentrations to 1,580 mg (T-N)/L with increasing OLR to $6.3kg-COD/m^3{\cdot}d$, while those were increased by maintaining influent ammonia concentrations below 340 mg (T-N)/L by MAP precipitation with increasing OLR to $9.6kg-COD/m^3{\cdot}d$. Initial inhibition of ammonia on anaerobic processes was observed at a concentration of 760 mg (T-N)/L and the COD removal efficiency and biogas generation dropped to 1/2 at ammonia concentration ranges of $1,540{\sim}1,870mg$ (T-N)/L. It is essential to remove ammonia in swine wastewaters to an initial inhibition level before anaerobic processes for the effective removal of COD.

Enhancing Anaerobic Digestion of Furfural Wastewater through Magnetite Powder Supplementation (자철석 가루 투입을 통한 푸르푸랄의 혐기성 소화 개선 효과 조사)

  • Seonmin Kang;Joonyeob Lee
    • Journal of Environmental Science International
    • /
    • v.33 no.2
    • /
    • pp.131-138
    • /
    • 2024
  • The effect of magnetite particles on the anaerobic digestion (AD) of furfural wastewater was investigated using sequential anaerobic batch tests. The batch tests with four 500 mL anaerobic bioreactors were performed under two conditions: FC treatment for AD of furfural without magnetite particles, and FM treatment for AD of furfural with magnetite particles. The FC bioreactors showed a decreasing methane production rate (MPR) across the sequential batches, with a final batch MPR of 11.3 ± 0.4 mL CH4/L/d, indicating the need for a methanogenesis enhancer to achieve high-rate AD of furfural. Conversely, FM bioreactors exhibited significantly higher MPR, exceeding FC values by 4-196%, with a final batch MPR of 33.5 ± 0.1 mL CH4/L/d, which was about three times higher than FC. Additionally, FM bioreactors had faster degradation rates of furfural, valeric acid, and acetic acid compared to FC, with values exceeding those in PC by 3.0, 1.14, and 2.8 times, respectively. These results demonstrate that magnetite particles can enhance the AD of furfural not only by accelerating methanogenesis but also by accelerating the anaerobic degradation of furfural and its intermediates, such as volatile fatty acids. This study provides valuable insights for developing high-rate AD systems for furfural wastewater treatment.

Pigment and Saikosoponin Production Through Bioreactor Culture of Carthamus tinctorius and Bupleurum falcatum

  • Wenyuan Gao;Lei Fan;Hahn, Eun-Joo;Paek, Kee-Yoeup
    • Journal of Plant Biotechnology
    • /
    • v.3 no.1
    • /
    • pp.1-5
    • /
    • 2001
  • Traditional culture technology of medicinal plants mainly depends on the field culture, which has many problems. With progress of modern culture technology, it has become possible to produce valuable secondary metabolites from medicinal plants. In this paper, we discuss about the pigment and saikosaponin production from too medicinal plants, Carthamus tinctorius and Bupleurum falcatum, through bioreactor culture system. A two-stage bioreactor culture system was established for the production of yellow and red pigments and saikosaponins by cell suspension cultures of Carthamus tinctorius and Bupleurum falcatum. In Carthamus tinctorius, balloon type airlift bioreactors and column type airlift bioreactors were employed for the tell culture and for the pigment production, respectively. The greatest pigment production was obtained on White medium supplemented with 4 mg/L kinetin, high levels of sucrose concentration and photosynthetic photon flux. In Bupleurum falcatum, adventitious roots were cultured in balloon type airlift bioreactors and the root growth was greatest on SH medium containing 5 mg/L IBA and 0.2 mg/L kinetin. HPLC analysis showed that the contents of main active saikosaponins a, c, and d in adventitious roots were almost the same as those in field cultured root.

  • PDF

Conversion of Organic Carbon in Food Processing Wastewater to Photosynthetic Biomass in Photo-bioreactors Using Different Light Sources

  • Suwan, Duangkamon;Chitapornpan, Sukhuma;Honda, Ryo;Chiemchaisri, Wilai;Chiemchaisri, Chart
    • Environmental Engineering Research
    • /
    • v.19 no.3
    • /
    • pp.293-298
    • /
    • 2014
  • An anaerobic photosynthetic treatment process utilizing purple non-sulfur photosynthetic bacteria (PNSB) was applied to the recovery of organic carbon from food processing wastewater. PNSB cells, by-product from the treatment, have high nutrition such as proteins and vitamins which are a good alternative for fish feed. Effects of light source on performance of anaerobic photosynthetic process were investigated in this study. Two bench-scale photo-bioreactors were lighted with infrared light emitting diodes (LEDs) and tungsten lamps covered with infrared transmitting filter, respectively, aiming to supply infrared light for photosynthetic bacteria growth. The photo-bioreactors were operated to treat noodle-processing wastewater for 323 days. Hydraulic retention time (HRT) was set as 6 days. Organic removals in the photo-bioreactor lighted with infrared LEDs (91%-95%) was found higher than those in photo-bioreactor with tungsten lamps with filter (79%-83%). Biomass production in a 150 L bench-scale photo-bioreactor was comparable to a 8 L small-scale photo-bioreactor in previous study, due to improvement of light supply efficiency. Application of infrared LEDs could achieve higher treatment performance with advantages in energy efficiency and wavelength specifity.