Acknowledgement
본 연구는 환경부의 폐자원에너지화 전문인력양성사업으로 지원되었습니다(YL-WE-21-002). 또한, 이 논문은 2023년도 정부(교육부)의 재원으로 한국연구재단의 램프(LAMP) 사업 지원을 받아 수행된 연구입니다(No. RS-2023-000301702).
References
- Akobi, C., Hafez, H., Nakhla, G., 2016, The impact of furfural concentrations and substrate-to-biomass ratios on biological hydrogen production from synthetic lignocellulosic hydrolysate using mesophilic anaerobic digester sludge, Bioresource Technology, 221, 598-606. https://doi.org/10.1016/j.biortech.2016.09.067
- Akobi, C., Hafez, H., Nakhla, G., 2017, Impact of furfural on biological hydrogen production kinetics from synthetic lignocellulosic hydrolysate using mesophilic and thermophilic mixed cultures, Int. J. Hydrog. Energy, 42(17), 12159-12172. https://doi.org/10.1016/j.ijhydene.2017.03.173
- Angelidaki, I., Alves, M., Bolzonella, D., Borzacconi, L., Campos, J. L., Guwy, A. J., Kalyuzhnyi, S., Jenicek, P., Van Lier, J. B., 2009, Defining the biomethane potential (BMP) of solid organic wastes and energy crops: A proposed protocol for batch assays, Water Sci. Technol., 59(5), 927-934. https://doi.org/10.2166/wst.2009.040
- APHA-AWWA-WEF, 2005, Standard methods for the Examination of Water and Wastewater, American Public Health Association, American Water Works Association and Water Environment Federation, 21st Ed., American Public Health Association: Washington, DC, USA.
- Cruz Viggi, C., Rossetti, S., Fazi, S., Paiano, P., Majone, M., Aulenta, F., 2014, Magnetite particles triggering a faster and more robust syntrophic pathway of methanogenic propionate degradation, Environ. Sci. Technol., 48(13), 7536-7543. https://doi.org/10.1021/es5016789
- Ghasimi, D. S. M., Aboudi, K., de Kreuk, M., Zandvoort, M. H., van Lier, J. B., 2016, Impact of lignocellulosic-waste intermediates on hydrolysis and methanogenesis under thermophilic and mesophilic conditions, Chemical Engineering Journal, 295, 181-191. https://doi.org/10.1016/j.cej.2016.03.045
- Jung, S., Kim, M., Lee, J., Shin, J., Shin, S. G., Lee, J., 2022, Effect of magnetite supplementation on mesophilic anaerobic digestion of phenol and benzoate: Methane production rate and microbial communities, Bioresource Technology, 350.
- Kato, S., Hashimoto, K., Watanabe, K., 2012, Methanogenesis facilitated by electric syntrophy via (semi)conductive iron-oxide minerals, Environ. Microbiol., 14(7), 1646-1654. https://doi.org/10.1111/j.1462-2920.2011.02611.x
- Lee, J., Koo, T., Yulisa, A., Hwang, S., 2019, Magnetite as an enhancer in methanogenic degradation of volatile fatty acids under ammonia-stressed condition, J. Environ. Manag., 241, 418-426. https://doi.org/10.1016/j.jenvman.2019.04.038
- Li, Q., Liu, Y., Yang, X., Zhang, J., Lu, B., Chen, R., 2020, Kinetic and thermodynamic effects of temperature on methanogenic degradation of acetate, propionate, butyrate and valerate, Chemical Engineering Journal, 396, 125366.
- Mao, L., Zhang, L., Gao, N., Li, A., 2013, Seawater-based furfural production via corncob hydrolysis catalyzed by FeCl3 in acetic acid steam, Green Chemistry, 15(3), 727-737. https://doi.org/10.1039/c2gc36346a
- Prabakar, D., Suvetha K, S., Manimudi, V. T., Mathimani, T., Kumar, G., Rene, E. R., Pugazhendhi, A., 2018, Pretreatment technologies for industrial effluents: Critical review on bioenergy production and environmental concerns, J. Environ. Manag., 218, 165-180. https://doi.org/10.1016/j.jenvman.2018.03.136
- Qadir, M., Drechsel, P., Jimenez Cisneros, B., Kim, Y., Pramanik, A., Mehta, P., Olaniyan, O., 2020, Global and regional potential of wastewater as a water, nutrient and energy source, Nat. Resour. Forum, 44(1), 40-51. https://doi.org/10.1111/1477-8947.12187
- Qiu, B., Shi, J., Hu, W., Gao, J., Li, S., Chu, H., 2023, Construction of hydrothermal liquefaction system for efficient production of biomass-derived furfural: Solvents, catalysts and mechanisms, Fuel, 354, 129278.
- Stams, A. J., Plugge, C. M., 2009, Electron transfer in syntrophic communities of anaerobic bacteria and archaea, Nat. Rev. Microbiol., 7(8), 568-577. https://doi.org/10.1038/nrmicro2166
- Sun, H., Wang, E., Li, X., Cui, X., Guo, J., Dong, R., 2021, Potential biomethane production from crop residues in China: Contributions to carbon neutrality, Renew. Sustain. Energy Rev., 148.
- Tian, H., Quan, Y., Yin, Z., Yin, C., Fu, Y., 2023, Bioelectrochemical Purification of Biomass Polymer Derived Furfural Wastewater and Its Electric Energy Recovery, Polymers, 15(16).
- Wang, Z., Liu, Z., Noor, R. S., Cheng, Q., Chu, X., Qu, B., Zhen, F., Sun, Y., 2019, Furfural wastewater pretreatment of corn stalk for whole slurry anaerobic co-digestion to improve methane production, Sci. Total Environ., 674, 49-57. https://doi.org/10.1016/j.scitotenv.2019.04.153
- Xia, A., Feng, D., Huang, Y., Zhu, X., Wang, Z., Zhu, X., Liao, Q., 2022, Activated Carbon Facilitates Anaerobic Digestion of Furfural Wastewater: Effect of Direct Interspecies Electron Transfer, ACS Sustain. Chem. Eng., 10(25), 8206-8215. https://doi.org/10.1021/acssuschemeng.2c01907
- Xu, H., Chang, J., Wang, H., Liu, Y., Zhang, X., Liang, P., Huang, X., 2019, Enhancing direct interspecies electron transfer in syntrophic-methanogenic associations with (semi) conductive iron oxides: Effects and mechanisms, Sci. Total Environ., 695, 133876.
- Zwietering, M. H., Jongenburger, I., Rombouts, F. M., Van't Riet, K., 1990, Modeling of the bacterial growth curve, Appl. Environ. Microbiol., 56(6), 1875-1881. https://doi.org/10.1128/aem.56.6.1875-1881.1990