• Title/Summary/Keyword: biomedical signal

Search Result 1,124, Processing Time 0.033 seconds

The study for electric readout of X-ray signal using MOSFET (MOSFET를 이용한 X선 신호의 전기적 획득에 관한 연구)

  • Park, S.K.;Kang, Y.S.;Seo, J.H.;Park, J.K.;Nam, S.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1998 no.11
    • /
    • pp.295-296
    • /
    • 1998
  • With xeroradiography appearance, DR (Digital Radiography) system have been studying for X-ray detection using photoreceptor. Also detection method for receptor charge change have been developing variably. We use photoreceptor material of a-Se(Amorphous Selenium) with high DQE, high SNR(Signal to Noise Ratio) and high transformation efficiency of X-ray signals into electrical signals. After a-Se receptor is uniformly charged by using Arc discharge, X-ray is exposed. Then a-Se receptor produce subtle charge variation and MOSFET detect charge variations. The detected signal pass A/D converter and signal processing by PC. As results, the initial voltage is 8V. It has wide dynamic range needed digital radiography system. In this study, we obtained data with changing kVp(tube potential voltage) and fixed 8mAs(tube current by exposure time) in X-ray system. However MOSFET detector for X-ray signal is not tested X-ray mAs variations. But if MOSFET detector is tested X-ray mAs variation and exactly calibrated multichannel is made and noise-reduction is done, suitable DR system readout method will be done.

  • PDF

Signal Processing and Data Management in SiMACS (SiMACS에서의 생체신호처리 및 데이터관리)

  • Suh, J.J.;Kim, J.J.;Lee, S.B.;Park, S.H.;Woo, E.J.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1994 no.05
    • /
    • pp.57-59
    • /
    • 1994
  • In this paper, we present the software part of the intelligent data processing unit (IDPU), which plays an important role in SiMACS. The software system processes ECG, EEG, EMG, blood pressure, respiration, temperature signals, and extracts some information about patient conditions. It displays the patient condition information and the signal data synchronously, and manages them together with other patient personal data in a network-based client/server environment. The software system is designed in an object-oriented paradigm, and implemented in C++ as a window-based application program.

  • PDF

AR modelling for a biomedical signal using Kalman filter (Kalman filter를 이용한 생체신호의 AR modelling)

  • Kim, D.K.;Park, H.J.;Chee, Y.J.;Park, K.S.;Lee, C.W.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.05
    • /
    • pp.184-187
    • /
    • 1997
  • In terms of a system identification, we present a method for autoregressive(AR) modelling of variious biomedical signal. Model order is estimated fly low rank approximation and coefficients are determined by innovation processes of Kalman filter derivation. An application of the method is given for visual evoked potentials.

  • PDF

Development of Isolated Arbitrary Waveform Generator Based on Microprocessor (마이크로프로세서를 이용한 분리형 임의파형발생기의 개발)

  • Kim, Nam-Hyun;Kim, Won-Ky;Yoo, Sun-Kook;Yang, Ho
    • Journal of Biomedical Engineering Research
    • /
    • v.10 no.1
    • /
    • pp.53-58
    • /
    • 1989
  • An arbitrary waveform generator was developed for the experiment of electro-physiology and the electrical stimulator. This system has been constructed three parts. (1 ) Data input parts (2) Data processing and control parts (3) Analog signal output parts The system characteristics were as follows. (1) System based on Microprocessor (2) Input using Thumbwheel switch (3) Isolated output signal (4) System flexibility

  • PDF

Novel function of stabilin-2 in myoblast fusion: the recognition of extracellular phosphatidylserine as a "fuse-me" signal

  • Kim, Go-Woon;Park, Seung-Yoon;Kim, In-San
    • BMB Reports
    • /
    • v.49 no.6
    • /
    • pp.303-304
    • /
    • 2016
  • Myoblast fusion is important for skeletal muscle formation. Even though the knowledge of myoblast fusion mechanism has accumulated over the years, the initial signal of fusion is yet to be elucidated. Our study reveals the novel function of a phosphatidylserine (PS) receptor, stabilin-2 (Stab2), in the modulation of myoblast fusion, through the recognition of PS exposed on myoblasts. During differentiation of myoblasts, Stab2 expression is higher than other PS receptors and is controlled by calcineurin/NFAT signaling on myoblasts. The forced expression of Stab2 results in an increase in myoblast fusion; genetic ablation of Stab2 in mice causes a reduction in muscle size, as a result of impaired myoblast fusion. After muscle injury, muscle regeneration is impaired in Stab2-deficient mice, resulting in small myofibers with fewer nuclei, which is due to reduction of fusion rather than defection of myoblast differentiation. The fusion-promoting role of Stab2 is dependent on its PS-binding motif, and the blocking of PS-Stab2 binding impairs cell-cell fusion on myoblasts. Given our previous finding that Stab2 recognizes PS exposed on apoptotic cells for sensing as an "eat-me" signal, we propose that PS-Stab2 binding is required for sensing of a "fuse-me" signal as the initial signal of myoblast fusion.

Design of Real-Time Autonomic Nervous System Evaluation System Using Heart Instantaneous Frequency

  • Noh, Yeon-Sik;Park, Sung-Jun;Park, Sung-Bin;Yoon, Hyung-Ro
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.4
    • /
    • pp.576-583
    • /
    • 2008
  • In this study, we attempt to design a real-time autonomic nervous system(ANS) evaluation system usable during exercise using heart instantaneous frequency(HIF). Although heart rate variability(HRV) is considered to be a representative signal widely used ANS evaluation system, the R-peak detection process must be included to obtain an HRV signal, which involves a high sampling frequency and interpolation process. In particular, it cannot accurately evaluate the ANS using HRV signals during exercise because it is difficult to detect the R-peak of electrocardiogram(ECG) signals with exposure to many noises during exercise. Therefore, in this study, we develop the ground for a system that can analyze an ANS in real-time by using the HIF signal circumventing the problem of the HRV signal during exercise. First, we compare the HRV and HIF signals in order to prove that the HIF signal is more efficient for ANS analysis than HRV signals during exercise. Further, we performed real-time ANS analysis using HIF and confirmed that the exerciser's ANS variation experiences massive surges at points of acceleration and deceleration of the treadmill(similar to HRV).

ERG Signal Modeling Based on the Retinal Model

  • Chae, S.P.;Lee, J.W.;Jang, W.Y.;Kim, M.N.;Kim, S.Y.;Cho, J.H.
    • Proceedings of the IEEK Conference
    • /
    • 2000.07b
    • /
    • pp.637-640
    • /
    • 2000
  • ERG signal represents the responses of the each layer of retina for the visual stimulus and accumulated responses according to the signal processing occurring in the retina. By investigating the reaction types of each wave of the ERG, various kinds of information for the diagnosis and the signal processing mechanisms in the retina can be obtained. In this paper, the ERG signal is generated by simulating of the volume conductor field of response of each retina layer and summing of them algebraically. The retina model used for simulation is Shah’s Computer Retina model which is one of the most reliable models recently developed. The generated ERG is compared with the typical ERG and shows a very close similarity. By changing the parameters of the retina model, the diagnostic investigation is performed with the variation of the ERG waveform.

  • PDF

ECG Data Coding Using Piecewise Fractal Interpolation

  • Jun, Young-Il;Jung, Hyun-Meen;Yoon, Young-Ro;Yoon, Hyung-Ro
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1994 no.12
    • /
    • pp.134-137
    • /
    • 1994
  • In this paper, we describe an approach to ECG data coding based on a fractal theory of iterated contractive transformations defined piecewise. The main characteristic of this approach is that it relies on the assumption that signal redundancy can be efficiently captured and exploited through piecewise self-transformability on a block-wise basis. The variable range size technique is employed to reduce the reconstruction error. Large ranges are used for encoding the smooth waveform to yield high compression efficiency, and the smaller ranges are used for encoding rapidly varying parts of the signal to preserve the signal quality. The suggested algorithm was evaluated using MIT/BIH arrhythmia database. A high compression ratio is achieved with a relatively low reconstruction error.

  • PDF

Estimation of Equilibrium Sense using Fuzzy Theory (퍼지 이론을 이용한 평형감 평가)

  • Lim, Hyung-Soon;Lee, Chang-Goo;Kim, Nam-Gyun
    • Journal of IKEEE
    • /
    • v.4 no.2 s.7
    • /
    • pp.173-180
    • /
    • 2000
  • In this paper, we interpreted and evaluated the relation between the sensation of equilibrium and biomedical signal automatically by applying the fuzzy theory. We induced the vertigo by using the caloric test, and presented the correlation between vertigo and biomedical signal by using the quantification method. We objectively analyzed the organic relation of the biomedical signal by fuzzy rule design using the table-lookup scheme and obtained good result in recognizing the level of the sensation of equilibrium.

  • PDF