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ECG Data Coding Using Piecewise Fractal Interpolation
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ABSTRACT

In this paper, we describe an approach to ECG data coding
based on a fractal theory of iterated contractive transforma-
tions defined piecewise. The main characteristic of this ap-
proach is that it relies on the assumption that signal redun-
dancy can be efficiently captured and exploited through
piecewise self-transformability on a block-wise basis.

The variable range size technique is employed to reduce the
reconstruction error. Large ranges are used for encoding the
smooth waveform to yield high compression efficiency, and
the smaller ranges are used for encoding rapidly varying parts
of the signal to preserve the signal quality.

The suggested algorithm was evaluated using MIT/BIH ar-
rhythmia database. A high compression ratio is achieved with
a relatively low reconstruction error.

INTRODUCTION

In recent years, many algorithms for ECG data compression
have been suggested. The need for ECG data compression
stems from two main reasons; effective storage and effective
real time transmission [1].

ECG data compression methods have been divided into three
groups; direct methods, transformation methods and parame-
ter extraction methods [1],[2]. The direct methods base their
detection of redundancies on the direct analysis of the actual
signal samples. Most of the direct data compression tech-
niques employ polynomial predictors and interpolators. In
contrast, transformation methods mainly use spectral and en-
ergy distribution analysis for detecting redundancies. The pa-
rameter extraction method is an irreversible process with
which a particular characteristic or parameter of the signal is
extracted.

Traditional methods to represent the single-valued data in-
clude polynomial fits and autoregressive moving-average
(ARMA) models. With a polynomial fit, a data sequence is
represented by the value of a polynomial evaluated at each
sample point. ARMA models represent data as the output of a
filter that is excited by an input, such as an impulse or white
noise, with filter coefficients determined by a least-squares fit
of the filter output to the data. With iterated function systems
(IFS), the model uses the data itself to represent the discrete
sequence and, as a result, is very different from traditional ap-
proaches [3]. In this paper, we apply IFS theory to discrete
sequences of ECG signal.

ITERATED FUNCTION SYSTEMS

IFS theory has recently received a great deal of attention [3]-
[9]. A fractal may be seen as a compact description of the hi-
erarchy of features in a given phenomenon. Some of the best
examples of this is the so called self-similar or self-affine

fractals. These can be generated by finite collections of map-
pings acting on a metric space where a different map is chosen
at random at each time step. Such dynamic systems have been
given the name Iterated Function Systems (IFSs) by Barns-
ley[4][5]-

An IFS is defined as a complete metric space X with a dis-
tance function % and a finite set of contractive mappings, {w;:
X—-X fori=12,.,M}. Each map, w,, is usually affine and
has the contractivity factor s; where s; satisfies A(w(x), w())
<s;-h(x,y)forallx,y e X,0<s;<1.

The signal is encoded in the form of an iterative system (a
space and a map from the space to itself) /:X—X. The space
X is a complete metric space of discrete sequences, and the
mapping W (or some iterate of ) is a contraction. The con-
tractive mapping fixed point theorem ensures convergence to
a fixed point upon iteration of . The goal is to construct the
mapping W with fixed point ‘close’(based on a properly cho-
sen metric A(f, g)) to a given discrete sequence that is to be
encoded, and such that # can be stored compactly. The col-
lage theorem provides motivation that a good mapping can be
found [4]. The decoding procedure consists of iterating the
mapping W from any initial discrete sequence until the iterates
converge to the fixed point.

Fractal techniques have been used for some time to create
amazingly realistic computer graphics, such as mountain
ranges and tree foliage. They are based on algorithms that re-
cursively or iteratively generate patterns based on local rule.
One of these algorithms is based on affine transforms. A
transformation w;, : X—.X of the form
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where a;, b,, c;, d;, e;, and f; are real numbers, is called a two-
dimensional affine transformation. Each affine transformation
w; can skew, stretch, rotate, scale and translate an input data.

IFS are able to produce fractals that we may consider to be
any set with non-integer dimension and details at all scales of
magnification. IFS's can produce complicated functions with
only a few maps.

BLOCK-BASED FRACTAL CODING

Recently fractal techniques have been applied to coding real .
data [6]-[9]. The following block-based fractal coding tech-
nique exploits similarities in different parts of a one-
dimensional signal.

Similar patterns in different parts of the signal must be
matched by using affine transforms. This affine transforms
have to be contractive. A method of forcing a spatial contrac-
tion is the pattern matching between blocks with eight sam-
ples and blocks with a number greater than 8, for instance 16.
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The blocks with eight samples must tile the signal and are
called range blocks. The blocks with 16 samples are called
domain blocks and can be taken from any part of the signal.

For each range block in turn a domain block must be found
that has a similar pattern. Maximizing the number of different
patterns that can be extracted from the signal, will improve the
chance of finding a good pattern match.

In encoding a signal, the type and magnitude of these data
manipulations must be known by both the encoder and de-
coder. Therefore in order to code a range block, the encoder
must transmit codewords to the decoder that indicate the lo-
cation of the domain block in the signal and what type of
modifiers must be used in order to generate the correct pattern
for the range biock.

There are many possible domain blocks in a signal, and there
are a multitude of modifiers that could be used in order to try
to generate a suitable pattern match for each range block.
However, all this information must be transmitted to the de-
coder, so it is prudent to use only the minimum number of
domain blocks and modifiers as is necessary to produce a set
of patterns rich enough that most range blocks can find a satis-
factory match. This reduced set of modifiers is a subset of the
affine transform.

The decoding process can be dealt with in a similar way. The
decoder is initialized with an arbitrary signal, and parts of the
signal corresponding to domain blocks are taken, modified,
and used to reduce other parts of the signal corresponding to
range blocks. The striking aspect of fractal transforms is that,
as the above algorithm is iterated, the decoded signal becomes
increasingly more like the encoded signal and less as the arbi-
trary signal used as a starting point.

If the starting signal at the decoder had been different, a sine
wave for instance, the signal at the decoder would still have
converged to the signal at the encoder, although it might take
a different number of iterations. This is because only contrac-
tive transforms were allowed. That is, the area of the domain
block is greater than the area of the range block. At the de-
coder, any error associated with the original starting signal is
reduced by the sample-value scaling factor at each iteration
until it becomes insignificant [10].

FRACTAL INTERPOLATION

Fractal interpolation functions provide a new means for fit-
ting experimental data. The graph of the fractal interpolation
function can be made close to the data. Moreover, one can en-
sure that the fractal dimension of the graph of the fractal in-
terpolation function agrees with that of the data, over an ap-
propriate range of scales.

Let a set of data {(x;, y) : i =0,1,2,....M} be given. The inter-
polation points are taken as a subset of the data points with
(xg, yp) and (xp, y4y). The space X is the x x y plane and the
interpolation function is constructed with M-affine maps of
the form

G- ab) ()
Wiy=ci diy+fi. @)

Affine maps such as (2) are often called shear transforma-
tions [4]: vertical lines are mapped to vertical lines contracted
by the factor d,. In equation (2), the parameter d; is called the
contraction factor for map i and is constrained to be real and

lie in the interval (-1,1). Its value is independent of the inter-
polation points and it helps control the shape of the interpola-
tion function between interpolation points.

Each affine map is constrained to map the endpoints of the
set of interpolation poeints to two consecutive interpolation
points. That is,

[XOJ (xi-]] d [xM] (xiJ f 1 2 M 3
w; = and w, = i=12,...M
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Thus, once the contraction factor d; for each map has been
chosen, the remaining parameters may be found using the
endpoint constraints equation (3) and are given by
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After the map parameters have been determined, the fractal
interpolation function may be constructed with one of two al-
gorithms: the deterministic algorithm or the random iteration
algorithm [3].

The piecewise self-affine fractal model is a generalization of
the linear fractal interpolation model and has its mathematical
roots embedded in recurrent IFS theory [6],[7].

While the description of these models may be succinctly ex-
pressed, the fractal functions may be very complicated. In
addition, since the number of degrees of freedom associated
with these models is very large, it is important to find an effi-
cient solution to the inverse problem.

One method for finding the best set of interpolation points
for a given data set would be to exhaustively search all possi-
ble combinations of interpolation points and for each set,
search for a set of contraction factors. However, this method
is not computationally feasible and a more efficient procedure
is required. We used the contraction factor calculation method
suggested by Mazel and Hayes [3]. In this algorithm, the
number of maps that one uses is variable and an error toler-
ance is set a priori.

INVERSE ALGORITHM

The encoding process of the AFI method proceeded as fol-
lows. Initially, the range block size s was chosen. A search
was then performed for the domain block with size twice that
of the range block which best minimized the distance between
the original function H and the interpolation function w(H). If
this best domain block and its corresponding w resulted in an
error less than a predetermined tolerance e., w was stored and
the process was repeated for the next range block. If the prede-
termined tolerance was not satisfied, the range block was
subdivided into two equal size blocks. This process was re-
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peated until the tolerance condition was satisfied, or a range
block of a predetermined minimum size 7,,,, was reached. For
range blocks of size r,,,, the best w was stored whether or not
e, was satisfied. The process was continued until the entire
signal was encoded.

The following steps are details of an iterative algorithm
protocol for finding both the interpolation points and the con-
traction factors for a practical data set.

1) Choose the tolerance level e, and the minimum range size
Y min-

2) Choose the range block size s and the domain block size
sp with sp, > sz.

3) Choose the domain block.

4) Compute the contraction factor d; for the map associated
with the range block defined by the pair of interpolation
points.

5) If |d]| = 1, choose the next domain block and then go to
step 4.

6) Compute the map parameters and form the map w; asso-
ciated with the pair of interpolation points. Apply the map
to each point of the function to yield w{H).

7) Compute and temporarily store the distance between the
original function H, and the interpolation function w,(H).

8) Repeat steps 3-7 until the end of the function is reached.

9) If the distance h(H,, w{(H)) 2 e, then subdivide the range
size and repeat steps 3-8 until the distance < e, or a range
block of a predetermined minimum size was reached.

10) Store the pair of interpolation points and contraction
factor that yield the minimum value of h(H,, w(H)) from
step 6 and 7.

11) Choose the next range block and repeat steps 3-10 until
the entire function has been searched.

The above algorithm finds an IFS with a self-affine attractor
that approximates the given function. The maps of the IFS
found will be such that map w;, when applied to H, will yield
a function w(H) that is within a minimum distance of H,.
There is flexibility in the choice of the distance measure.

RESULTS

The amount of compression was represented in terms of
compression ratio (CR) defined as the ratio between the num-
ber of bits needed to represent the signal and the number of
bits in the compressed data.

As a quantitative measure of distortion, we have used the
percent rms difference (PRD) defined as

E[xa,g(n) =X ()]’

PRD= |=—
S

n=0

where x,,(n) and x,,..(n) are the original sampled ECG signal
and the reconstructed signal, respectively, and N is the total
number of samples in the data set. The PRD is easy to calcu-
late, and thus is extensively used in the ECG compression lit-
erature [2].

The described AFI method with variable range size was
tested using one channel of data from each of the MIT/BIH
arrthythmia databases sampled at 400 samples/s with a 12-bit
resolution.
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Fig. 1. Compression ratio and PRD with partitioning toler-
ance.

The coding-decoding system is based on the construction of
a fractal code—a contractive data transformation for which
the original data is an approximate fixed point—that produces
a sequence of signals which converges to a fractal approxima-
tion of the original when applied iteratively on any initial data
at the decoder.

For the MIT/BIH data we used r,,,, = 8 and the Euclidean
distance measure. The variable range size technique is em-
ployed to reduce the reconstruction error and increase the
compression ratio. Large ranges are used for encoding slowly
varying parts of ECG to yield high compression efficiency,
and pulse-like QRS complexes are divided into smaller ranges
to preserve the range detail.

The values of the domain block size s;, and the range block
size s are varied while the quotient s, /s was held constant at
two. As the range block size and domain block size are in-
creased, we increase the compression ratio since we model
larger pieces of given data with each map and, consequently,
fewer maps are used.

For each map, the fractal interpolation requires the following
parameters to represent a given data sequence: interpolation
points, domain endpoints, contraction factors, range size, do-
main size and position.

Affine mapping coefficients are found for each range having
the size of 64, 32, 16 or 8. The average storage requirement
for a single w; was 52 bits. The contraction factor d; is quan-
tized 6 bits. The position of R; was inferred from the orcering.
Only 10 bits were required to identify the size of R; and the
location of D,, this number being dependent on both the
choices of the number of possible domains and the level in the
partitioning.

Fig. 1 is a plot of the compression ratio and PRD versus the
tolerance for the range partitioning. The performance of the

algorithm is demonstrated in Fig. 2. An ECG record with ab-
normal complex is shown.

Using the same database, the algorithm was compared with
the fixed range fractal interpolation compression method [11].
The reconstructed and error signal using the FI algorithm are
shown in Fig. 3, respectively. The comparison of the FI and
AFI is summarized in Table I. In the new scheme, the recon-
struction errors are distributed more uniformly and the peak
error is usually lower at any compression ratio.
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Fig. 2. Original ECG signal, its reconstruction using the AFI
algorithm and the error signal.

In applications where a PRD of about 5% is acceptable, the
AFT method yields CR as high as 9.09, without any entropy
coding of the parameters of the fractal code. Note that a low
PRD of 3.59% was achieved at CR of 7.16.

CONCLUSION

This paper presented an ECG data coding systems referred
Adaptive Fractal Interpolation method that is based on a the-
ory of iterated contractive data transformations. The AF1 de-
sign issue is to select an adaptive data sequence partition
made of nonoverlapping range blocks. The piecewise self-
affine fractal interpolation is used where a discrete data set is
viewed as being composed of contractive affine transforma-
tion of pieces of itself.

The AFI method using variable range size is found to yield a
significantly lower reconstruction error for a given compres-
sion ratio than the fixed range size fractal interpolation
method.

The attempt of fractal interpolation coding on ECG wave-
forms shows acceptable results. We believe that it is an inter-
esting area that is worth further investigation.
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