• Title/Summary/Keyword: biomedical implants

Search Result 102, Processing Time 0.038 seconds

Current trends in dental implants

  • Gaviria, Laura;Salcido, John Paul;Guda, Teja;Ong, Joo L.
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.40 no.2
    • /
    • pp.50-60
    • /
    • 2014
  • Tooth loss is very a very common problem; therefore, the use of dental implants is also a common practice. Although research on dental implant designs, materials and techniques has increased in the past few years and is expected to expand in the future, there is still a lot of work involved in the use of better biomaterials, implant design, surface modification and functionalization of surfaces to improve the long-term outcomes of the treatment. This paper provides a brief history and evolution of dental implants. It also describes the types of implants that have been developed, and the parameters that are presently used in the design of dental implants. Finally, it describes the trends that are employed to improve dental implant surfaces, and current technologies used for the analysis and design of the implants.

Implant success rates in full-arch rehabilitations supported by upright and tilted implants: a retrospective investigation with up to five years of follow-up

  • Francetti, Luca;Rodolfi, Andrea;Barbaro, Bruno;Taschieri, Silvio;Cavalli, Nicolo;Corbella, Stefano
    • Journal of Periodontal and Implant Science
    • /
    • v.45 no.6
    • /
    • pp.210-215
    • /
    • 2015
  • Purpose: The aim of this retrospective study was to investigate the cumulative success rate, the implant survival rate, and the occurrence of biological complications in implants supporting full-arch immediately loaded rehabilitations supported by upright and tilted implants. Methods: The clinical records and periapical radiographs of patients who attended follow-up visits were collected, and information was recorded regarding marginal bone loss resorption, the occurrence of peri-implant infectious diseases, and the implant survival rate. Implants were classified as successful or not successful according to two distinct classifications for implant success. Results: A total of 53 maxillary and mandibular restorations including 212 implants were analysed, of which 56 implants were studied over the full five-year follow-up period. After five years, the cumulative success rate was 76.04% according to the Misch classification and 56.34% according to the Albrektsson classification. The cumulative implant survival rate was 100%, although one implant was found to be affected by peri-implantitis at the second follow-up visit. Conclusions: The cumulative success rate of the implants dropped over time, corresponding to the progression of marginal bone resorption. The prevalence of peri-implantitis was very low, and the implant survival rate was not found to be related to the cumulative success rate.

RF Heating of Implants in MRI: Electromagnetic Analysis and Solutions

  • Cho, Youngdae;Yoo, Hyoungsuk
    • Investigative Magnetic Resonance Imaging
    • /
    • v.24 no.2
    • /
    • pp.67-75
    • /
    • 2020
  • When a patient takes an MRI scan, the patient has a risk of unexpected injuries due to the intensive electromagnetic (EM) field. Among the injuries, the tissue heating by the time-varying EM field is one of the main issues. Since an implanted artificial structure with a conductive material aggravates the heating effect, lots of studies have been conducted to investigate the effect around the implants. In this review article, a mechanism of RF heating around the implants and related studies are comprehensively investigated.

Nanowire Patterning for Biomedical Applications

  • Yun, Young-Sik;Lee, Jun-Young;Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.382-382
    • /
    • 2012
  • Nanostructures have a larger surface/volume ratio as well as unique mechanical, physical, chemical properties compared to existing bulk materials. Materials for biomedical implants require a good biocompatibility to provide a rapid recovery following surgical procedure and a stabilization of the region where the implants have been inserted. The biocompatibility is evaluated by the degree of the interaction between the implant materials and the cells around the implants. Recent researches on this topic focus on utilizing the characteristics of the nanostructures to improve the biocompatibility. Several studies suggest that the degree of the interaction is varied by the relative size of the nanostructures and cells, and the morphology of the surface of the implant [1, 2]. In this paper, we fabricate the nanowires on the Ti substrate for better biocompatible implants and other biomedical applications such as artificial internal organ, tissue engineered biomaterials, or implantable nano-medical devices. Nanowires are fabricated with two methods: first, nanowire arrays are patterned on the surface using e-beam lithography. Then, the nanowires are further defined with deep reactive ion etching (RIE). The other method is self-assembly based on vapor-liquid-solid (VLS) mechanism using Sn as metal-catalyst. Sn nanoparticle solutions are used in various concentrations to fabricate the nanowires with different pitches. Fabricated nanowries are characterized using scanning electron microscopy (SEM), x-ray diffraction (XRD), and high resolution transmission electron microscopy (TEM). Tthe biocompatibility of the nanowires will further be investigated.

  • PDF

Antimicrobial surfaces for craniofacial implants: state of the art

  • Actis, Lisa;Gaviria, Laura;Guda, Teja;Ong, Joo L.
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.39 no.2
    • /
    • pp.43-54
    • /
    • 2013
  • In an attempt to regain function and aesthetics in the craniofacial region, different biomaterials, including titanium, hydroxyapatite, biodegradable polymers and composites, have been widely used as a result of the loss of craniofacial bone. Although these materials presented favorable success rates, osseointegration and antibacterial properties are often hard to achieve. Although bone-implant interactions are highly dependent on the implant's surface characteristics, infections following traumatic craniofacial injuries are common. As such, poor osseointegration and infections are two of the many causes of implant failure. Further, as increasingly complex dental repairs are attempted, the likelihood of infection in these implants has also been on the rise. For these reasons, the treatment of craniofacial bone defects and dental repairs for long-term success remains a challenge. Various approaches to reduce the rate of infection and improve osseointegration have been investigated. Furthermore, recent and planned tissue engineering developments are aimed at improving the implants' physical and biological properties by improving their surfaces in order to develop craniofacial bone substitutes that will restore, maintain and improve tissue function. In this review, the commonly used biomaterials for craniofacial bone restoration and dental repair, as well as surface modification techniques, antibacterial surfaces and coatings are discussed.

The relation between shape and interfacial stress of dental implants (치과용 임플란트의 형상과 계면 응력의 상관관계)

  • Kim, H. S.;Lee, S. U.;Cho, N. H.;Ko, J. Y.;Park, S. S.;lee, H.;Ahn, S.;Shim, J. S.;Lee, C. Y.;Moon, H. S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.128-131
    • /
    • 2002
  • Several FE models were developed based on micro-CT images of a mandibular specimen. A new dental implant model was suggested from parameter study for the relation between shape and interfacial stress of dental implants. It is found that the proposed model is highly beneficial.

  • PDF

Direct Metal Laser Sintering-New Possibilities in Biomedical Part Manufacturing

  • Kotila, Juha;Syvanen, Tatu;Hanninen, Jouni;Latikka, Maria;Nyrhila, Olli
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.248-249
    • /
    • 2006
  • Direct Metal Laser Sintering (DMLS) has been utilized for prototype manufacturing of functional metal components for years now. During this period the surface quality, mechanical properties, detail resolution and easiness of the process have been improved to the level suitable for direct production of complex metallic components for various applications. The paper will present the latest DMLS technology utilizing EOSINT M270 laser sintering machine and EOSTYLE support generation software for direct and rapid production of complex shaped metallic components for various purposes. The focus of the presentation will be in rapid manufacturing of customized biomedical implants and surgical devices of the latest stainless steel, titanium and cobalt-chromium-molybdenum alloys. In addition to biomedical applications, other application areas where complex metallic parts with stringent requirements are being needed will be presented.

  • PDF

An Overview of Research Trends in Antibacterial Coatings on Titanium Implants (임상가를 위한 특집 3 - 티타늄 임플란트의 항균코팅 동향)

  • Kim, Woo-Hyun;Kim, Kyoung-Nam
    • The Journal of the Korean dental association
    • /
    • v.48 no.2
    • /
    • pp.113-118
    • /
    • 2010
  • Titanium and titanium alloys are the most common materials used for dental and biomedical implants, owing to their biocompatibility and favourable mechanical properties. However infection of the region surrounding a dental implant by pathogenic microorganisms is a significant factor in implant failure. Prevention and control of microbial colonization of implant surfaces is considerable interest to the biomedical community. One important strategy is to render the implant surface antibacterial by impeding the formation of biofilm. A number of approaches have been proposed for this purpose. Therefore, we reviewed the researches of antibacterial coatings on titanium implants in this articles.

Bioactivity of Calcium Phosphate Ceramic Coatings on Metallic Implants

  • Kim, Cheol-Sang;Ducheyne, P.
    • Journal of Biomedical Engineering Research
    • /
    • v.11 no.1
    • /
    • pp.5-12
    • /
    • 1990
  • Calcium phosphate ceramics have been applied intensively to orthopaedic and dental implants by virtue of their osteoconductive nature. In an attempt to enhance the bone implant intergrity and Eta utility, these ceramics are deposited onto the porous surface of metallic implants. The coating procedure and the ensuing phase transformations of the ceramic alter the mechanical properties and surface chemistry of the ceramic layers as well as those of the substrate. These structural and compositional differences are directly related to the interaction mechanisms at the surface-active ceramicbone interface. Material and processing induced influences on dissolution, electrokinetic behavior, ceramic-metallic substrate interface and boRe growth enhancement are presented.

  • PDF

The Analysis of Stress and Variation of Cement Thickness as the Variation of Design Variables for Custom-Made Hip Implant (Cement Type 맞춤형 인공고관절의 설계 변수 변화에 따른 Cement 두께 변화와 이에 대한 응력 분석)

  • Park, Heung-Seok;Chun, Heoung-Jae;Youn, In-Chan;Lee, Moon-Kyu;Seo, Duck-Chan;Choi, Kui-Won
    • Journal of Biomedical Engineering Research
    • /
    • v.27 no.6
    • /
    • pp.402-408
    • /
    • 2006
  • The choice of suitable hip implant is one of important factors in the total hip arthroplasty (THA). In clinical view point, an improper adaptation of hip implant might induce abnormal stress distribution to the bone, which can shorten the lifespan of replaced hip implant. Currently, interest in the custom-designed hip implants has increased as studies reveal the significance of geometric shape of patient's femur in modeling and designing the implants. In this study, we have developed custom-designed hip implant models with various sizes, and analyzed the stress distribution in the bone and bone cement using the Finite Element Method. It was found that minimizing the gap between implant stem and femoral cavity is crucial to minimize the stress concentration in the bone.