Browse > Article
http://dx.doi.org/10.5125/jkaoms.2013.39.2.43

Antimicrobial surfaces for craniofacial implants: state of the art  

Actis, Lisa (Department of Biomedical Engineering, University of Texas at San Antonio)
Gaviria, Laura (Department of Biomedical Engineering, University of Texas at San Antonio)
Guda, Teja (Department of Biomedical Engineering, University of Texas at San Antonio)
Ong, Joo L. (Department of Biomedical Engineering, University of Texas at San Antonio)
Publication Information
Journal of the Korean Association of Oral and Maxillofacial Surgeons / v.39, no.2, 2013 , pp. 43-54 More about this Journal
Abstract
In an attempt to regain function and aesthetics in the craniofacial region, different biomaterials, including titanium, hydroxyapatite, biodegradable polymers and composites, have been widely used as a result of the loss of craniofacial bone. Although these materials presented favorable success rates, osseointegration and antibacterial properties are often hard to achieve. Although bone-implant interactions are highly dependent on the implant's surface characteristics, infections following traumatic craniofacial injuries are common. As such, poor osseointegration and infections are two of the many causes of implant failure. Further, as increasingly complex dental repairs are attempted, the likelihood of infection in these implants has also been on the rise. For these reasons, the treatment of craniofacial bone defects and dental repairs for long-term success remains a challenge. Various approaches to reduce the rate of infection and improve osseointegration have been investigated. Furthermore, recent and planned tissue engineering developments are aimed at improving the implants' physical and biological properties by improving their surfaces in order to develop craniofacial bone substitutes that will restore, maintain and improve tissue function. In this review, the commonly used biomaterials for craniofacial bone restoration and dental repair, as well as surface modification techniques, antibacterial surfaces and coatings are discussed.
Keywords
Dental implants; Osseointegration; Antimicrobial agents; Surface-coated materials; Bone regeneration;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Li L, Finnegan MB, Ozkan S, Kim Y, Lillehoj PB, Ho CM, et al. In vitro study of biofilm formation and effectiveness of antimicrobial treatment on various dental material surfaces. Mol Oral Microbiol 2010;25:384-90.   DOI   ScienceOn
2 Vasilev K, Cook J, Griesser HJ. Antibacterial surfaces for biomedical devices. Expert Rev Med Devices 2009;6:553-67.   DOI   ScienceOn
3 Li Z, Lee D, Sheng X, Cohen RE, Rubner MF. Two-level antibacterial coating with both release-killing and contact-killing capabilities. Langmuir 2006;22:9820-3.   DOI   ScienceOn
4 Zilberman M, Elsner JJ. Antibiotic-eluting medical devices for various applications. J Control Release 2008;130:202-15.   DOI   ScienceOn
5 Langer R. Polymer-controlled drug delivery systems. Acc Chem Res 1993;26:537-42.   DOI   ScienceOn
6 Potara M, Jakab E, Damert A, Popescu O, Canpean V, Astilean S. Synergistic antibacterial activity of chitosan-silver nanocomposites on Staphylococcus aureus. Nanotechnology 2011;22:135101.   DOI   ScienceOn
7 White RJ. An historical overview of the use of silver in wound management. Br J Community Nurs 2001;6(Silver Suppl 1):3-8.
8 Rai M, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 2009;27:76-83.   DOI   ScienceOn
9 Lee D, Cohen RE, Rubner MF. Antibacterial properties of Ag nanoparticle loaded multilayers and formation of magnetically directed antibacterial microparticles. Langmuir 2005;21:9651-9.   DOI   ScienceOn
10 Nair LS, Laurencin CT. Silver nanoparticles: synthesis and therapeutic applications. J Biomed Nanotechnol 2007;3:301-16.   DOI   ScienceOn
11 Stryker. Medpor$^{\circledR}$. 2013 [cited 2013 Mar 4]. Available from: http://www.stryker.com/en-us/products/Craniomaxillofacial/MEDPOR/index.htm.
12 OsteoSymbionicsTM. CLEARSHIELDTM Craniofacial Implant. 2011 [cited 2013 Mar 4]. Available from: http://www.osteosymbionics.com/implants/.
13 BioMet Microfixation. LactoSorb$^{\circledR}$ SE: The leader in resorbable technology. 2013 [cited 2013 Mar 4]. Available from: http://www.lorenzsurgical.com/product.php?item=17.
14 BonAlive Biomaterials Ltd. BonAlive$^{\circledR}$. 2012 [cited 2013 Mar 4]. Available from: http://www.bonalive.com/.
15 Harris LG, Tosatti S, Wieland M, Textor M, Richards RG. Staphylococcus aureus adhesion to titanium oxide surfaces coated with non-functionalized and peptide-functionalized poly(L-lysine)-grafted-poly(ethylene glycol) copolymers. Biomaterials 2004;25:4135-48.   DOI   ScienceOn
16 Cheng G, Xue H, Zhang Z, Chen S, Jiang S. A switchable biocompatible polymer surface with self-sterilizing and nonfouling capabilities. Angew Chem Int Ed Engl 2008;47:8831-4.   DOI   ScienceOn
17 Al-Deyab SS, El-Newehy MH, Nirmala R, Abdel-Megeed A, Kim HY. Preparation of nylon-6/chitosan composites by nanospider technology and their use as candidate for antibacterial agents. Korean J Chem Eng 2013;30:422-8.   DOI   ScienceOn
18 Bilek F, Sulovska K, Lehocky M, Saha P, Humpolicek P, Mozetic M, et al. Preparation of active antibacterial LDPE surface through multistep physicochemical approach II: graft type effect on antibacterial properties. Colloids Surf B Biointerfaces 2013;102:842-8.   DOI   ScienceOn
19 Zhao C, Li X, Li L, Cheng G, Gong X, Zheng J. Dual functionality of antimicrobial and antifouling of poly(N-hydroxyethylacrylamide)/ salicylate hydrogels. Langmuir 2013;29:1517-24.   DOI   ScienceOn
20 Dickson KF, Friedman J, Buchholz JG, Flandry FD. The use of BoneSource hydroxyapatite cement for traumatic metaphyseal bone void filling. J Trauma 2002;53:1103-8.   DOI
21 Belkoff SM, Mathis JM, Jasper LE, Deramond H. An ex vivo biomechanical evaluation of a hydroxyapatite cement for use with vertebroplasty. Spine (Phila Pa 1976) 2001;26:1542-6.   DOI   ScienceOn
22 Stryker. BoneSource: Ostoconductive HA bone paste. 2004 [cited 2013 Mar 1]. Available from: http://www.stryker.com/en-us/GSDAMRetirement/index.htmstellent/groups/public/documents/web_prod/023526.pdf.
23 Spies CK, Schnürer S, Gotterbarm T, Breusch SJ. Efficacy of Bone SourceTM and CementekTM in comparison with EndobonTM in critical size metaphyseal defects, using a minipig model. J Appl Biomater Biomech 2010;8:175-85.
24 DePuy Synthes. Norian SRS. 2012 [cited 2013 Mar 1]. Available from: http://www.synthes.com/sites/intl/Products/Biomaterials/Trauma/Pages/Norian_SRS.aspx.
25 DePuy Synthes. Norian SRS. Distal radius-impacted intra-articular fracture. 2007 [cited 2013 Mar 1]. Available from: http://www.synthes.com/MediaBin/International%20DATA/036.000.883.pdf.
26 DePuy Synthes. Norian SRS. Cystic lesion (pelvis) - curettage of a cystic lesion. 2006 [cited 2013 Mar 1]. Available from: http://www.synthes.com/MediaBin/International%20DATA/036.000.886.pdf.
27 DePuy Synthes. Norian SRS. Calcaneus. 2006 [cited 2013 Mar 1]. Available from: http://www.synthes.com/MediaBin/International%20DATA/036.000.886.pdf.
28 BioMet Microfixation. Biomet Microfixation Mimix$^{\circledR}$ and Mimix$^{\circledR}$ QS Bone Replacement Systems. 2012 [cited 2013 Mar 4]. Available from: http://www.lorenzsurgical.com/product.php?item=24&cat=9;%20http://www.lorenzsurgical.com/downloads/LOR-7013-MimixBro%20(m)-FINAL.pdf.
29 Zimmer. Palacos$^{\circledR}$ Bone Cements. 2013 [cited 2013 Mar 4]. Available from: http://www.zimmer.com/en-US/hcp/surgical/product/palacos-bone-cements.jspx.
30 Monjo M, Petzold C, Ramis JM, Lyngstadaas SP, Ellingsen JE. In vitro osteogenic properties of two dental implant surfaces. Int J Biomater 2012;2012:181024.
31 Abrahamsson I, Albouy JP, Berglundh T. Healing at fluoride-modified implants placed in wide marginal defects: an experimental study in dogs. Clin Oral Implants Res 2008;19:153-9.   DOI   ScienceOn
32 Goodrich JT, Sandler AL, Tepper O. A review of reconstructive materials for use in craniofacial surgery bone fixation materials, bone substitutes, and distractors. Childs Nerv Syst 2012;28:1577-88.   DOI   ScienceOn
33 Cho YR, Gosain AK. Biomaterials in craniofacial reconstruction. Clin Plast Surg 2004;31:377-85.   DOI   ScienceOn
34 Kretlow JD, Young S, Klouda L, Wong M, Mikos AG. Injectable biomaterials for regenerating complex craniofacial tissues. Adv Mater 2009;21:3368-93.   DOI   ScienceOn
35 BioMet. TiMesh$^{\circledR}$, Titanized polymers. 2013 [cited 2013 Feb 26]. Available from: http://www.biomet.com/biologics/timesh.cfm.
36 Schug-Pass C, Tamme C, Tannapfel A, Kockerling F. A lightweight polypropylene mesh (TiMesh) for laparoscopic intraperitoneal repair of abdominal wall hernias: comparison of biocompatibility with the DualMesh in an experimental study using the porcine model. Surg Endosc 2006;20:402-9.   DOI
37 Piattelli A, Cosci F, Scarano A, Trisi P. Localized chronic suppurative bone infection as a sequel of peri-implantitis in a hydroxyapatite-coated dental implant. Biomaterials 1995;16:917-20.   DOI   ScienceOn
38 Gotz F. Staphylococcus and biofilms. Mol Microbiol 2002;43: 1367-78.   DOI   ScienceOn
39 Archer NK, Mazaitis MJ, Costerton JW, Leid JG, Powers ME, Shirtliff ME. Staphylococcus aureus biofilms: properties, regulation, and roles in human disease. Virulence 2011;2:445-59.   DOI   ScienceOn
40 Richter WS, Ivancevic V, Meller J, Lang O, Le Guludec D, Szilvazi I, et al. 99mTc-besilesomab (Scintimun) in peripheral osteomyelitis: comparison with 99mTc-labelled white blood cells. Eur J Nucl Med Mol Imaging 2011;38:899-910.   DOI   ScienceOn
41 Yaszemski MJ, Trantolo DJ, Lewandrowski KU, Hasirci V, Altobelli DE, Wise DL. Biomaterials in Orthopedics. New York: Marcel Dekker; 2004.
42 Ramaswamy Y, Wu C, Zreiqat H. Orthopedic coating materials: considerations and applications. Expert Rev Med Devices 2009;6:423-30.   DOI   ScienceOn
43 Ozcan M, Hämmerle C. Titanium as a reconstruction and implant material in dentistry: advantages and Pitfalls. Materials 2012;5:1528-45.   DOI
44 Coelho PG, Granjeiro JM, Romanos GE, Suzuki M, Silva NR, Cardaropoli G, et al. Basic research methods and current trends of dental implant surfaces. J Biomed Mater Res B Appl Biomater 2009;88:579-96.
45 Jackson MJ, Ahmed W. Surface engineered surgical tools and medical devices. New York: Springer; 2007.
46 Buser D, Broggini N, Wieland M, Schenk RK, Denzer AJ, Cochran DL, et al. Enhanced bone apposition to a chemically modified SLA titanium surface. J Dent Res 2004;83:529-33.   DOI   ScienceOn
47 Schwarz F, Ferrari D, Herten M, Mihatovic I, Wieland M, Sager M, et al. Effects of surface hydrophilicity and microtopography on early stages of soft and hard tissue integration at non-submerged titanium implants: an immunohistochemical study in dogs. Periodontol 2007;78:2171-84.   DOI   ScienceOn
48 Schwarz F, Herten M, Sager M, Wieland M, Dard M, Becker J. Histological and immunohistochemical analysis of initial and early osseous integration at chemically modified and conventional SLA titanium implants: preliminary results of a pilot study in dogs. Clin Oral Implants Res 2007;18:481-8.   DOI   ScienceOn
49 Sul YT, Johansson C, Albrektsson T. Which surface properties enhance bone response to implants? Comparison of oxidized magnesium, TiUnite, and Osseotite implant surfaces. Int J Prosthodont 2006;19:319-28.
50 Sul YT, Johansson CB, Röser K, Albrektsson T. Qualitative and quantitative observations of bone tissue reactions to anodised implants. Biomaterials 2002;23:1809-17.   DOI   ScienceOn
51 Al-Nawas B, Groetz KA, Goetz H, Duschner H, Wagner W. Comparative histomorphometry and resonance frequency analysis of implants with moderately rough surfaces in a loaded animal model. Clin Oral Implants Res 2008;19:1-8.
52 Sul YT, Johansson C, Byon E, Albrektsson T. The bone response of oxidized bioactive and non-bioactive titanium implants. Biomaterials 2005;26:6720-30.   DOI   ScienceOn
53 Abu-Serriah MM, McGowan DA, Moos KF, Bagg J. Extra-oral endosseous craniofacial implants: current status and future developments. Int J Oral Maxillofac Surg 2003;32:452-8.   DOI
54 Bencharit S. Challenges and prospective applications of extra-oral implants for maxilloracial rehabilitation. Anaplastology 2012;1:e103.
55 Wan DC, Nacamuli RP, Longaker MT. Craniofacial bone tissue engineering. Dent Clin North Am 2006;50:175-90.   DOI   ScienceOn
56 Dumas JE, BrownBaer PB, Prieto EM, Guda T, Hale RG, Wenke JC, et al. Injectable reactive biocomposites for bone healing in critical-size rabbit calvarial defects. Biomed Mater 2012;7:024112.   DOI   ScienceOn
57 Kretlow JD. Biomaterial-based strategies for craniofacial tissue engineering [PhD thesis]. Houston: Department of Bioengineering, Rice University; 2010. p. 416.
58 Pagni G, Kaigler D, Rasperini G, Avila-Ortiz G, Bartel R, Giannobile WV. Bone repair cells for craniofacial regeneration. Adv Drug Deliv Rev 2012;64:1310-9.   DOI   ScienceOn
59 Thimmappa B, Girod SC. Principles of implant-based reconstruction and rehabilitation of craniofacial defects. Craniomaxillofac Trauma Reconstr 2010;3:33-40.   DOI
60 Kim J, McBride S, Fulmer M, Harten R, Garza Z, Dean DD, et al. Fiber-reinforced calcium phosphate cement formulations for cranioplasty applications: a 52-week duration preclinical rabbit calvaria study. J Biomed Mater Res B Appl Biomater 2012;100:1170-8.
61 Wolfaardt JF, Wilkes GH, Parel SM, Tjellström A. Craniofacial osseointegration: the Canadian experience. Int J Oral Maxillofac Implants 1993;8:197-204.
62 Kretlow JD, Young S, Klouda L, Wong M, Mikos AG. Injectable biomaterials for regenerating complex craniofacial tissues. Adv Mater 2009;21:3368-93.   DOI   ScienceOn
63 Stanford CM. Surface modifications of dental implants. Aust Dent J 2008;53(Suppl 1):S26-33.   DOI   ScienceOn
64 Davies JE. Understanding peri-implant endosseous healing. Dent Educ 2003;67:932-49.
65 Kuzyk PR, Schemitsch EH. The basic science of peri-implant bone healing. Indian J Orthop 2011;45:108-15.   DOI   ScienceOn
66 Wang W, Ouyang Y, Poh CK. Orthopaedic implant technology: biomaterials from past to future. Ann Acad Med Singapore 2011;40:237-44.
67 Geetha M, Singh AK, Asokamani R, Gogia AK. Ti based biomaterials, the ultimate choice for orthopaedic implants-A review. Prog Mater Sci 2009;54:397-425.   DOI   ScienceOn
68 Black J, Hastings GW. Handbook of biomaterial properties. London, New York: Chapman & Hall; 1998.
69 Le Guehennec L, Lopez-Heredia MA, Enkel B, Weiss P, Amouriq Y, Layrolle P. Osteoblastic cell behaviour on different titanium implant surfaces. Acta Biomater 2008;4:535-43.   DOI   ScienceOn
70 Norowski PA Jr, Bumgardner JD. Biomaterial and antibiotic strategies for peri-implantitis: a review. J Biomed Mater Res B Appl Biomater 2009;88:530-43.
71 Shirtliff M, Leid JG. The role of biofilms in device-related infections. Springer series on biofilms, 3. Berlin: Springer; 2009.
72 Pal S, Tak YK, Song JM. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Appl Environ Microbiol 2007;73:1712-20.   DOI   ScienceOn
73 Busscher HJ, Rinastiti M, Siswomihardjo W, van der Mei HC. Biofilm formation on dental restorative and implant materials. J Dent Res 2010;89:657-65.   DOI   ScienceOn
74 Panacek A, Kvitek L, Prucek R, Kolar M, Vecerova R, Pizurova N, et al. Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J Phys Chem B 2006;110:16248-53.   DOI   ScienceOn
75 Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JT, et al. The bactericidal effect of silver nanoparticles. Nanotechnology 2005;16:2346-53.   DOI   ScienceOn
76 Eom HJ, Choi J. p38 MAPK activation, DNA damage, cell cycle arrest and apoptosis as mechanisms of toxicity of silver nanoparticles in Jurkat T cells. Environ Sci Technol 2010;44:8337-42.   DOI   ScienceOn
77 Li WR, Xie XB, Shi QS, Zeng HY, Ou-Yang YS, Chen YB. Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl Microbiol Biotechnol 2010;85:1115-22.   DOI   ScienceOn
78 de Lima R, Seabra AB, Duran N. Silver nanoparticles: a brief review of cytotoxicity and genotoxicity of chemically and biogenically synthesized nanoparticles. Appl Toxicol 2012;32:867-79.   DOI   ScienceOn
79 NovaBone. NovaBone: bioactive synthetic bone graft. 2009 [cited 2013 Mar 4]. Available from: http://www.novabone.com/NB/novabone_works.html.
80 Verne E, Ferraris M, Jana C, Paracchini L. Bioverit$^{\circledR}$ I base glass/Ti particulate biocomposite: "in situ" vacuum plasma spray deposition. J Eur Ceram Soc 2000;20:473-9.   DOI   ScienceOn
81 Neovius E, Engstrand T. Craniofacial reconstruction with bone and biomaterials: review over the last 11 years. J Plast Reconstr Aesthet Surg 2010;63:1615-23.   DOI   ScienceOn
82 Marsich E, Travan A, Donati I, Turco G, Kulkova J, Moritz N, et al. Biological responses of silver-coated thermosets: an in vitro and in vivo study. Acta Biomater 2013;9:5088-99.   DOI   ScienceOn
83 Liu Y, Kim HI. Characterization and antibacterial properties of genipin-crosslinked chitosan/poly(ethylene glycol)/ZnO/Ag nanocomposites. Carbohydrate Polymers 2012;89:111-6.   DOI   ScienceOn
84 Tsai MT, Chang YY, Huang HL, Hsu JT, Chen YC, Wu AY. Characterization and antibacterial performance of bioactive Ti-Zn-O coatings deposited on titanium implants. Thin Solid Films 2013;528:143-50.   DOI   ScienceOn
85 Ketonis C, Parvizi J, Jones LC. Evolving strategies to prevent implant-associated infections. J Am Acad Orthop Surg 2012;20:478-80.   DOI   ScienceOn
86 Hollinsky C, Sandberg S, Koch T, Seidler S. Biomechanical properties of lightweight versus heavyweight meshes for laparo-scopic inguinal hernia repair and their impact on recurrence rates. Surg Endosc 2008;22:2679-85.   DOI
87 Ge X, Leng Y, Bao C, Xu SL, Wang R, Ren F. Antibacterial coatings of fluoridated hydroxyapatite for percutaneous implants. J Biomed Mater Res A 2010;95:588-99.
88 Polypid. Stretching the limits of effective long term drug delivery. 2013 [cited 2013 Feb 28]. Available from: http://www.polypid.com/.
89 Miyamoto Y, Ishikawa K, Fukao H, Sawada M, Nagayama M, Kon M, et al. In vivo setting behaviour of fast-setting calcium phosphate cement. Biomaterials 1995;16:855-60.   DOI   ScienceOn
90 Martin TP, Kooi SE, Chang SH, Sedransk KL, Gleason KK. Initiated chemical vapor deposition of antimicrobial polymer coatings. Biomaterials 2007;28:909-15.   DOI   ScienceOn
91 Crawford K, Berrey BH, Pierce WA, Welch RD. In vitro strength comparison of hydroxyapatite cement and polymethylmethacrylate in subchondral defects in caprine femora. J Orthop Res 1998;16: 715-9.   DOI   ScienceOn
92 Ong JL, Carnes DL, Bessho K. Evaluation of titanium plasma-sprayed and plasma-sprayed hydroxyapatite implants in vivo. Biomaterials 2004;25:4601-6.   DOI   ScienceOn
93 Sul YT, Johansson CB, Jeong Y, Wennerberg A, Albrektsson T. Resonance frequency and removal torque analysis of implants with turned and anodized surface oxides. Clin Oral Implants Res 2002;13:252-9.   DOI   ScienceOn
94 Yang Y, Kim KH, Ong JL. A review on calcium phosphate coatings produced using a sputtering process--an alternative to plasma spraying. Biomaterials 2005;26:327-37.   DOI   ScienceOn
95 de Groot k, Klein COAT, Wolke JGC, de Blieck-Hogervorst JMA. Plasma-sprayed coating of calcium phosphate. In: Yamamuro T, Hench LL, Wilson J, eds. Handbook of bioactive ceramics, Vol. II: Calcium phosphate and Hydroxyapatite Ceramics. Boca Raton: CRC Press; 1990:133-42.
96 Lemons J. Biomaterials for dental implants. In: Misch CE, ed. Contemporary implant dentistry. St. Louis: Mosby; 1999.
97 Lacefield WR. Current status of ceramic coatings for dental implants. Implant Dent 1998;7:315-22.   DOI   ScienceOn
98 Kay JF. Calcium phosphate coatings for dental implants. Current status and future potential. Dent Clin North Am 1992;36:1-18.
99 Lacefield WR. Hydroxyapatite coatings. Ann N Y Acad Sci 1988; 523:72-80.   DOI
100 Goene RJ, Testori T, Trisi P. Influence of a nanometer-scale surface enhancement on de novo bone formation on titanium implants: a histomorphometric study in human maxillae. Int J Periodontics Restorative Dent 2007;27:211-9.
101 Berglundh T, Abrahamsson I, Albouy JP, Lindhe J. Bone healing at implants with a fluoride-modified surface: an experimental study in dogs. Clin Oral Implants Res 2007;18:147-52.   DOI   ScienceOn