임상가를 위한 특집 3 - 티타늄 임플란트의 항균코팅 동향

An Overview of Research Trends in Antibacterial Coatings on Titanium Implants

  • 김우현 (연세대학교 치과대학 치과생체재료공학교실 및 연구소, 구강악안면경조직재생연구센터) ;
  • 김경남 (연세대학교 치과대학 치과생체재료공학교실 및 연구소, 구강악안면경조직재생연구센터)
  • Kim, Woo-Hyun (Department and Research Institute of Dental Biomaterials and Bioengineering, and Research Institute of Orofacial Hard Tissue Regeneration College of Dentistry, Yonsei University) ;
  • Kim, Kyoung-Nam (Department and Research Institute of Dental Biomaterials and Bioengineering, and Research Institute of Orofacial Hard Tissue Regeneration College of Dentistry, Yonsei University)
  • 발행 : 2010.02.01

초록

Titanium and titanium alloys are the most common materials used for dental and biomedical implants, owing to their biocompatibility and favourable mechanical properties. However infection of the region surrounding a dental implant by pathogenic microorganisms is a significant factor in implant failure. Prevention and control of microbial colonization of implant surfaces is considerable interest to the biomedical community. One important strategy is to render the implant surface antibacterial by impeding the formation of biofilm. A number of approaches have been proposed for this purpose. Therefore, we reviewed the researches of antibacterial coatings on titanium implants in this articles.

키워드

참고문헌

  1. Ratner D, Hoffman S, Schoen J, Lemons, J. An Introduction to Materials in Medicine: Biomaterials Science. 2nd Edition. Elsevier Academic Press. 2004.
  2. Le Guehennec L, Soueidan A, Layrolle P, Amouriq Y.Le Guehennec L, Soueidan A, Layrolle P, Amouriq Y. Surface treatments of titanium dental implants for rapid osseointegration. Dent Mater 2007; 23: 844-854 https://doi.org/10.1016/j.dental.2006.06.025
  3. Daugaard H, Elmengaard B, Bechtold JE, Jensen T, Soballe K. The effect on bone growth enhancement of implant coatings with hydroxyapatite and collagen deposited electrochemically and by plasma spray. J Biomed Matter Res A 2009; 92A: 913-921.
  4. Kim TI, Jang JH, Kim HW, Knowles JC, Ku Y. Biomimetic approach to dental implants. Curr Pharm Des 2008; 14(22): 2201-2211 https://doi.org/10.2174/138161208785740171
  5. Darouiche RO. Treatment of infections associated with surgical implants. N Engl J Med 2004; 350: 1422-1429 https://doi.org/10.1056/NEJMra035415
  6. Harris LG, Richards RG. Staphylococci and implant surfaces: A review. Injury 2006; 37(Suppl 2): S3-S14
  7. Stigter M, Bezemer J, de Groot K, Layrolle P. Incorporation of different antibiotics into carbonated hydroxyapatite coatings on titanium implants, release and antibiotic efficacy. J Control Release 2004; 99: 127-137 https://doi.org/10.1016/j.jconrel.2004.06.011
  8. Zhao L, Chu PK, Zhang Y, Wu Z. Antibacterial coatings on titanium implants. J Biomed Matter Res A 2009; 91B: 470-480 https://doi.org/10.1002/jbm.b.31463
  9. Duran LW. Preventing medical device related infections. Med Device Technol 2000; 11: 14-17
  10. Radin S, Campbell JT, Ducheyne P, Cuckler JM. Calcium phosphate ceramic coatings as carriers of vancomycin. Biomaterials 1997; 21: 243-249
  11. Aebli N, Krebs J, Schwenke D, Stich H, Schawalder P, Theis JC. Degradation of hydroxyapatite coating on a well-functioning femoral component. J Bone Joint Surg Br 2003, 85(4): 499-503 https://doi.org/10.1302/0301-620X.85B4.13605
  12. Price JS, Tencer AF, Arm DM, Bohach GA. Controlled release of antibiotics from coated orthopedic implants. J Biomed Mater Res 1996; 30: 281-286 https://doi.org/10.1002/(SICI)1097-4636(199603)30:3<281::AID-JBM2>3.0.CO;2-M
  13. Gollwitzer H, Ibrahim K, Meyer H, Mittelmeier W, Busch R, Stemberger A. Antibacterial poly(D,Llactic acid) coating of medical implants using a biodegradable drug delivery technology. J Antimicrob Chemother 2003; 51: 585-591 https://doi.org/10.1093/jac/dkg105
  14. Harris LG, Mead L, Müller-Oberländer E, Richards RG. Bacteria and cell cytocompatibility studies on coated medical grade titanium surfaces. J Biomed Mater Res 2006; 78A: 50-58 https://doi.org/10.1002/jbm.a.30611
  15. Edupuganti OP, Antoci V Jr, King SB, Jose B, Adams CS, Parvizi J, Shapiro IM, Zeiger AR, Hickok NJ, Wickstrom E. Covalent bonding of vancomycin to Ti6Al4V alloy pins provides longterm inhibition of Staphylococcus aureus colonization. Bioorg Med Chem Lett 2007; 17: 2692-2696 https://doi.org/10.1016/j.bmcl.2007.03.005
  16. Antoci V Jr, Adams CS, Parvizi J, Davidson HM, Composto RJ, Freeman TA, Wickstrom E, Ducheyne P, Jungkind D, Shapiro IM, Hickok NJ. The inhibition of Staphylococcus epidermidis biofilms formation by vancomycin-modified titanium alloy and implications for the treatment of periprosthetic infection. Biomaterials 2008; 29: 4684-4690 https://doi.org/10.1016/j.biomaterials.2008.08.016
  17. Wolf J, Sternberg K, Behrend D, Schmitz KP, von Schwanewede H. Drug release of coated dental implant neck region to improve tissue integration. Biomed Tech 2009; 54(4): 219-217 https://doi.org/10.1515/BMT.2009.026
  18. Melaiye AYW. Silver and its application as an antimicrobial agent. Expert Opin Ther Pat 2005; 15: 125-130 https://doi.org/10.1517/13543776.15.2.125
  19. Percival SL, Bowler PG, Russell D. Bacterial resistance to silver in wound care. J Hos Infect 2005; 60: 1-7 https://doi.org/10.1016/j.jhin.2004.11.014
  20. Bosetti M, Masse A, Tobin E, Cannas M. Silver coated materials for external fixation devices: In vitro biocompatibility and genotoxicity. Biomaterials 2002; 23: 887-892 https://doi.org/10.1016/S0142-9612(01)00198-3
  21. Hardes J, Ahrens H, Gebert C, Streitbuerger A, Buerger H, Erren M, Gunsel A, Wedemeyer C, Saxler G, Winkelmann W, Gosheger G. Lack of toxicological side-effects in silver-coated megaprotheses in humans. Biomaterials 2007; 28: 2869-2875 https://doi.org/10.1016/j.biomaterials.2007.02.033
  22. Zhang W, Luo Y, Wang H, Jiang J, Pu S, Chu PK. Ag and Ag/N plasma modification of polyethylene for the enhancement of antibacterial properties and cell growth/proliferation. Acta Biomater 2008; 4: 2028-2036 https://doi.org/10.1016/j.actbio.2008.05.012
  23. Ewald A, Glückermann SK, Thull R, Gbureck U. Antimicrobial titanium/siver PVD coatings on titanium. Biomed Eng Online 2006; 5: 22 https://doi.org/10.1186/1475-925X-5-22
  24. Chen W, Liu Y, Courtney HS, Bettenga M, Agrawal CM, Bumgardner JD, Ong J L. In vitro anti-bacterial and biological properties of magnetron co-sputtered silver-containing hydroxyapatite coating. Biomaterials 2006; 27: 5512-5517 https://doi.org/10.1016/j.biomaterials.2006.07.003
  25. Kakoli D, Susmita B, Amit B, Balu K, Bruce L. Gibbins. Surface coating for improvement of bone cell materials and antimicrobial activities of Ti implant. J Biomed Mater Res 2008; 87B: 455-460 https://doi.org/10.1002/jbm.b.31125
  26. Nablo BJ, Schoenfisch MH. In vitro cytotoxicity of nitric oxide-releasing sol-gel derived materials. Biomaterials 2005; 26: 4405-4415 https://doi.org/10.1016/j.biomaterials.2004.11.015
  27. MacMicking J, Xie QW, Nathan C. Nitric oxide and macrophage function. Annu Rev Immunol 1997; 15: 323-350 https://doi.org/10.1146/annurev.immunol.15.1.323
  28. Nablo BJ, Rothrock AR, Schoenfisch MH. Nitric oxide-releasing sol-gel as antibacterial coatings for orthopedic implants. Biomaterials 2005; 26: 917-924 https://doi.org/10.1016/j.biomaterials.2004.03.031
  29. Hetrick EM, Schoenfisch MH. Antibacterial nitric oxide releasing xerogels: Cell viability and parallel plate flow cell adhesion studies. Biomaterials 2007; 28: 1948-1956 https://doi.org/10.1016/j.biomaterials.2007.01.006
  30. Gallardo-Moreno AM, Pacha-Olivenza MA, Saldana L, Perez-Giraldo C, Bruque JM, Vilaboa N, Gonzalez-Martin ML. In vitro biocompatibility and bacterial adhesion of UV irradiation. Acta Biomater 2009; 5: 181-192 https://doi.org/10.1016/j.actbio.2008.07.028
  31. Legeay G, Poncin-Epaillard F, Arciola CR. New surfaces with hydrophilic /hydrophobic characteristics in relation to (no)bioadhesion. Int J Artif Organs 2006; 29: 453-461
  32. Choi JY, Kim KH, Choy KC, Oh KT, Kim KN. Photocatalystic antibacterial effect of TiO2 films formed on Ti and TiAg exposed to Lactobacillus acidophilus. J Biomed Mater Res 2007; 80B: 353-359 https://doi.org/10.1002/jbm.b.30604
  33. Aita H, Hori N, Takeuchi M, Suzuki T, Yamada M, Anpo M, Ogawa T. The effect of ultraviolet functionalization of titanium on integration with bone. Biomaterials 2009; 30: 1015-1025 https://doi.org/10.1016/j.biomaterials.2008.11.004
  34. Del Curto B, Brunella MF, Giordano C, Pedeferri MP, Valtulina V, Visai L, Cigada A. Decreased bacteria adhesion to surface-treated titanium. Int J Artif Organ 2005; 28: 718-730 https://doi.org/10.1177/039139880502800711
  35. Zhang F, Zhang Z, Zhu X, Kang ET, Neoh KG. Silk-functionalized titanium surface for enhancing osteoblast functions and reducing bacterial adhesion. Biomaterials 2008; 29: 4751-4759 https://doi.org/10.1016/j.biomaterials.2008.08.043
  36. Harris LG, Tosatti S, Wieland M, Textor M, Richards RG. Staphylococcus aureus adhesion to titanium oxide surfaces coated with nonfunctionalized and peptide-functionalized poly(Llysine)- grafted-poly(ethylene glycol) copolymer. Biomaterials 2004; 25: 4135-4148 https://doi.org/10.1016/j.biomaterials.2003.11.033