• 제목/요약/키워드: biomass productivity

검색결과 373건 처리시간 0.023초

Factors Influencing the Production of Water-soluble Endopolysaccharides and Exopolysaccharides from Lentinus lepideus and their Effects on Immune Cytokine Production

  • Lee, Wi-Young;Ahn, Jin-Kwon;Kim, Dong-Hyun;Ka, Kang-Hyeon
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권3호
    • /
    • pp.560-567
    • /
    • 2008
  • An efficient method to produce water-soluble polysaccharides from Lentinus lepideus is described. The productivity of both endopolysaccharides (PPS) and exopolysaccharides (EPS) was compared under various culture conditions. The effect of treating their own PPS and EPS on immune cytokine production was also studied in relation to culture factors. High yield production of EPS required a moderate culture temperature $(25^{\circ}C)$ as well as long culture period (16-20 days). In contrast, PPS production required a high culture temperature $(30^{\circ}C)$ and short culture period (8 days). Most of the carbon sources did not affect polysaccharides and mycelial production except for sucrose. Immune cytokine levels in the EPS treatment varied among carbon sources or culture periods. PPS did not appear to affect much on the production of cytokines, regardless of the culturing factors, except for the culture period. These results suggest that the optimal culture conditions for L. lepideus vary according to culture purposes, and different culture conditions should be used for different targets including mycelial biomass, EPS, and PPS. Whereas the immunomodulating activitiy of EPS appeared to be affected by culture conditions in L. lepideus, that of PPS did not.

글루탐산 발효공정의 자동화 (Automation of Glutamic Acid Fermentation)

  • 박선호;홍기태;유승종;이재홍;배종찬
    • 한국식품과학회지
    • /
    • 제15권2호
    • /
    • pp.202-204
    • /
    • 1983
  • 이산화탄소 측정기 및 제어기를 사용하여 글루탐산 발효공정의 자동화 방법을 개발하였다. 이는 발효배기가스 중의 이산화탄소와 균체의 성장 간에 직선관계가 있고 따라서 적절한 균체농도에서 페니실린 투여를 자동화할 수 있었다. 페니실린 투여 후 균체성장 및 글루탐산 생성의 고농도당에 대한 저해작용을 감소시켜 주기 위한 방법으로서 회분식 추가당 첨가공정을 자동화할 수 있었으며, 그 결과로서 회분식 발효에 비하여 생산성과 수율이 향상되었다.

  • PDF

Effect of Flashing Light on Oxygen Production Rates in High-Density Algal Cultures

  • Park, Kyong-Hee;Kim, Dong-Il;Lee, Choul-Gyun
    • Journal of Microbiology and Biotechnology
    • /
    • 제10권6호
    • /
    • pp.817-822
    • /
    • 2000
  • A proper flashing light is expected to enhance microalgal biomass productivity and photosynthetic efficiency. The effect of flashing light on high-density Chlorella kessleri (UTEX 398) cultures was studied using light-emitting diodes. A frequency modulator was designed to flash LEDs, and the device successfully provided wide range of frequencies and various duty cycles of flashing. A relatively high frequencies of 10, 20 and 50 kHz were used in this study. These frequencies have very short flashing time ($2-50{\mu}s$), which corresponded to the time constant of the light reaction of photosynthesis. The specific oxygen production rates of photosynthesis under flashing light were compared with those under an equivalent continuous light in specially designed illumination cuvette. The specific oxygen production rates under flashing light were 5-25% higher than those under the continuous light. A range of cell concentration was discovered, where the benefit of flashing light was maximized. The photosynthetic efficiency was also higher under flashing light with frequencies of over 1 kHz, which was a clear indication of flashing light effect and the degree of mutual shading could by overcome by flashing lights, particularly at high-density algal cultures.

  • PDF

Isolation and Identification of Biofilm-Forming Marine Bacteria on Glass Surfaces in Dae-Ho Dike, Korea

  • Kwon, Kae-Kyoung;Lee, Hyun-Sang;Jung, Sung-Young;Yim, Joung-Han;Lee, Jung-Hyun;Lee, Hong-Kum
    • Journal of Microbiology
    • /
    • 제40권4호
    • /
    • pp.260-266
    • /
    • 2002
  • Bacterial strains were isolated from biofilms formed on glass slides submerged in seawater in Dae-Ho Dike. Eight strains showing fast attaching ability were selected and identified. Their exopolysaccharide (EPS)-producing ability and EPS properties were characterized. Based on Microlog System, 4 among the 8 strains were identified as Micrococcus luteus and the rest were Bacillus thuringiensis, Bacillus megaterium,, Staphylococcus saprophyticus and Agrobacterium vitis. A, vitis was reidentified as Sulfitobacter pontiacus based on 16S rDNA sequence data. The amount of water-soluble EPS produced by the 8 strains ranged from 0.114 to 1.329 g$.$l$\^$-1/ and the productivity was negatively correlated with the cell biomass. The molecular weight of the produced EPS ranged from 0.38 to 25.19$\times$10$\^$4/ Da. Glucose and galactose were ubiquitous sugar components. Mannose, ribose, and xylose were also major sugar components. The molecular weight and composition of the EPS showed strain-specific variation.

Chemical Imprints of the Upwelled Waters off the Coast of the Southern East Sea of Korea

  • Lee, Tong-Sup;Kim, Il-Nam
    • Journal of the korean society of oceanography
    • /
    • 제38권3호
    • /
    • pp.101-110
    • /
    • 2003
  • We made intensive observations on the coastal upwelling off the coast of the southern East Sea from June to August in 2001. The upwelling exhibited a weekly waxing and waning. The coastal upwelling of the year 2001 was characterized by abrupt outbreaks and the small local scale. Upwelling occurred more frequently off the coast of Ulsan and Gampo as reported by the earlier observers. The spread of freshly upwelled colder water was varied by each upwelling event. Generally cold waters were carried away northeastward off Pohang province. The upwelled cold waters were saltier than the resident surface waters. The pH and salinity-normalized alkalinity support the idea that the upwelled waters originate from the interior of the East Sea. The extraordinarily high concentration of dissolved oxygen suggests that the upwelled waters are closely connected to the southward flowing North Korea Cold Current. Although a lower primary productivity was reported for the upwelling region, underway surface fluorescence measurement revealed that the recently upwelled waters supported up to an order of magnitude higher algal biomass than the ambient waters. Because thermohaline circulation of the East Sea is so vigorous, with an estimated time scale of less than one hundred years, that the coastal upwelling should be considered not as an anomaly but as a regular component of a circulatory system. A quantitative understanding of upwelling seems to be a key to elucidate material cycling and the associated biological production in the East Sea.

Effects of Dissolved Oxygen and Agitation on Production of Serratiopeptidase by Serratia Marcescens NRRL B-23112 in Stirred Tank Bioreactor and its Kinetic Modeling

  • Pansuriya, Ruchir C.;Singhal, Rekha S.
    • Journal of Microbiology and Biotechnology
    • /
    • 제21권4호
    • /
    • pp.430-437
    • /
    • 2011
  • The effects of the agitation and aeration rates on the production of serratiopeptidase (SRP) in a 5-L fermentor (working volume 2-l) were systematically investigated using Serratia marcescens NRRL B-23112. The dissolved oxygen concentration, pH, biomass, SRP yield, and maltose utilization were all continuously measured during the course of the fermentation runs. The efficiencies of the aeration and agitation were evaluated based on the volumetric mass transfer coefficient ($K_La$). The maximum SRP production of 11,580 EU/ml with a specific SRP productivity of 78.8 EU/g/h was obtained with an agitation of 400 rpm and aeration of 0.075 vvm, which was 58% higher than the shake-flask level. The $K_La$ for the fermentation system supporting the maximum production (400 rpm, 0.075 vvm) was 11.3 $h^{-1}$. Under these fermentor optimized conditions, kinetic modeling was performed to understand the detailed course of the fermentation process. The resulting logistic and Luedeking-Piret models provided an effective description of the SRP fermentation, where the correlation coefficients for cell growth, SRP formation, and substrate consumption were 0.99, 0.94, and 0.84, respectively, revealing a good agreement between the model-predicted and experimental results. The kinetic analysis of the batch fermentation process for the production of SRP demonstrated the SRP production to be mixed growth associated.

Methanol을 이용한 단세포단백질의 생산에 관한 연구 (제 1 보) Methanol 이용 미생물의 분리 및 배지조성 (Production of Single-Cell Protein from Methanol (Part 1) Isolation of Methanol-Utilizing Microorgamism and Composition of Medium)

  • 유주현;정건섭;변유량
    • 한국미생물·생명공학회지
    • /
    • 제7권2호
    • /
    • pp.65-70
    • /
    • 1979
  • SCP생산을 위하여 토양과 하수로부터 methanol을 탄소원 및 에너지원으로 이용하는 세균을 분리하여 이중 생육이 우수한 균주를 선별하였고, 이의 형태적 생리적 특성을 조사하여 동정하였다. 그리고 탄소원, 질소원, 금속이온, 생육인자 등이 생육에 미치는 영향을 조사하여 영양조건을 최적화한 결과를 다음과 같이 얻었다. 1) 우량균주로 선별한 균주는 탄소원으로서 methanol 이외의 다른 유기화합물에서는 생육이 되지않는 obligate methylotrophs로서 형태적 생리적 특성을 근거로 Methylomonas methanolica로 동정되었다. 2) 최적영양조건은 초기 methanol 농도 0.8% (v/v), 질소원은 (NH$_4$)$_2$ SO$_4$ 0.6%, 금속이온은 MgSO$_4$.7H$_2$ 0.1%이었다.

  • PDF

Enhanced Production of Fatty Acids via Redirection of Carbon Flux in Marine Microalga Tetraselmis sp.

  • Han, Mi-Ae;Hong, Seong-Joo;Kim, Z-Hun;Cho, Byung-Kwan;Lee, Hookeun;Choi, Hyung-Kyoon;Lee, Choul-Gyun
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권2호
    • /
    • pp.267-274
    • /
    • 2018
  • Lipids in microalgae are energy-rich compounds and considered as an attractive feedstock for biodiesel production. To redirect carbon flux from competing pathways to the fatty acid synthesis pathway of Tetraselmis sp., we used three types of chemical inhibitors that can block the starch synthesis pathway or photorespiration, under nitrogen-sufficient and nitrogen-deficient conditions. The starch synthesis pathway in chloroplasts and the cytosol can be inhibited by 3-(3,4-dichlorophenyl)-1,1-dimethylurea and 1,2-cyclohexane diamine tetraacetic acid (CDTA), respectively. Degradation of glycine into ammonia during photorespiration was blocked by aminooxyacetate (AOA) to maintain biomass concentration. Inhibition of starch synthesis pathways in the cytosol by CDTA increased fatty acid productivity by 27% under nitrogen deficiency, whereas the blocking of photorespiration in mitochondria by AOA was increased by 35% under nitrogen-sufficient conditions. The results of this study indicate that blocking starch or photorespiration pathways may redirect the carbon flux to fatty acid synthesis.

Enhanced Biofuel Production from High-Concentration Bioethanol Wastewater by a Newly Isolated Heterotrophic Microalga, Chlorella vulgaris LAM-Q

  • Xie, Tonghui;Liu, Jing;Du, Kaifeng;Liang, Bin;Zhang, Yongkui
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권10호
    • /
    • pp.1460-1471
    • /
    • 2013
  • Microalgal biofuel production from wastewater has economic and environmental advantages. This article investigates the lipid production from high chemical oxygen demand (COD) bioethanol wastewater without dilution or additional nutrients, using a newly isolated heterotrophic microalga, Chlorella vulgaris LAM-Q. To enhance lipid accumulation, the combined effects of important operational parameters were studied via response surface methodology. The optimal conditions were found to be temperature of $22.8^{\circ}C$, initial pH of 6.7, and inoculum density of $1.2{\times}10^8cells/ml$. Under these conditions, the lipid productivity reached 195.96 mg/l/d, which was markedly higher than previously reported values in similar systems. According to the fatty acid composition, the obtained lipids were suitable feedstock for biodiesel production. Meanwhile, 61.40% of COD, 51.24% of total nitrogen, and 58.76% of total phosphorus were removed from the bioethanol wastewater during microalgal growth. In addition, 19.17% of the energy contained in the wastewater was transferred to the microalgal biomass in the fermentation process. These findings suggest that C. vulgaris LAM-Q can efficiently produce lipids from high-concentration bioethanol wastewater, and simultaneously performs wastewater treatment.

횡성호의 유기물 수지 및 거동 특성 (Organic Matters Budget and Movement Characteristic in Lake Hoengseong)

  • 정승현;박혜경;윤석환
    • 한국물환경학회지
    • /
    • 제28권2호
    • /
    • pp.238-246
    • /
    • 2012
  • Organic matters budget in Lake Hoengseong were monthly investigated from April 2009 to November 2009. The intense rainfall occurred at between July and August and the hydrological factors were highly varied during the rainfall season. By the concentrated rainfall, the elevation, influx and efflux were sharply increased and the turbid water was also flowed into the middle water column in Lake. The inflow of turbid water increased the nutrient concentrations in water body and this appears to stimulate of phytoplankton regard as the primary productivity of influx of organic matter. Monthly average concentration of dissolved organic carbon (DOC) was generally higher than the particulate organic carbon (POC) concentration in Lake, but Temporal and spatial variation of POC concentration was higher than DOC and the maximum POC concentration was recorded in surface water in August, had the highest phytoplankton biomass. Organic carbon concentration in inflow site was rarely changed during the dry season, but the concentration was rapidly increased by the initial intense rainfall. In organic matters budget, the most of the organic matters was inflowed from the inflow site at rainfall season. Especially, the influx of allochthonous organic matters during the intense rainfall was 72.4% in the total influx organic matters.