• Title/Summary/Keyword: biomass and carbon

Search Result 889, Processing Time 0.025 seconds

Phytoplankton Variability in Response to Glacier Retreat in Marian Cove, King George Island, Antarctica in 2021-2022 Summer (하계 마리안 소만 빙하후퇴에 따른 식물플랑크톤 변동성 분석)

  • Chorom Shim;Jun-Oh Min;Boyeon Lee;Seo-Yeon Hong;Sun-Yong Ha
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.5
    • /
    • pp.417-426
    • /
    • 2023
  • Rapid climate change has resulted in glacial retreat and increased meltwater inputs in the Antarctic Peninsula, including King George Island where Marian Cove is located. Consequently, these phenomena are expected to induce changes in the water column light properties, which in turn will affect phytoplankton communities. To comprehend the effects of glacial retreat on the marine ecosystem in Marian Cove, we investigated on phytoplankton biomass (chlorophyll-a, chl-a) and various environment parameters in this area in December 2021 and January 2022. The average temperature at the euphotic depth in January 2022 (1.41 ± 0.13 ℃) was higher than that in December 2021 (0.87 ± 0.17 ℃). Contrastingly, the average salinity was lower in January 2022 (33.9 ± 0.10 psu) than in December 2021 (34.1 ± 0.12 psu). Major nutrients, including dissolved inorganic nitrogen, phosphate, and silicate, were sufficiently high, and thus, did not act as limiting factors for phytoplankton biomass. In December 2021 and January 2022, the mean chl-a concentrations were 1.03 ± 0.64 and 0.66 ± 0.15㎍ L-1, respectively. The mean concentration of suspended particulate matter (SPM) was 24.9 ± 3.54 mgL-1 during the study period, with elevated values observed in the vicinity of the inner glacier. However, relative lower chl-a concentrations were observed near the inner glacier, possibly due to high SPM load from the glacier, resulting in reduced light attenuation by SPM shading. Furthermore, the proportion of nanophytoplankton exceeded 70% in the inner cove, contributing to elevated mean fractions of nanophytoplankton in the glacier retreat marine ecosystem. Overall, our study indicated that freshwater and SPM inputs from glacial meltwater may possibly act as main factors controlling the dynamics of phytoplankton communities in glacier retreat areas. The findings may also serve as fundamental data for better understanding the carbon cycle in Marian Cove.

Ultrafine Particle Events in the Ambient Atmosphere in Korea

  • Maskey, Shila;Kim, Jae-Seok;Cho, Hee-Joo;Park, Kihong
    • Asian Journal of Atmospheric Environment
    • /
    • v.6 no.4
    • /
    • pp.288-303
    • /
    • 2012
  • In this study, real time measurements of particle number size distribution in urban Gwangju, coastal Taean, and industrial Yeosu in Korea were conducted in 2008 to understand the occurrence of ultrafine particle (UFP) (<100 nm) events, the variation of its concentration among different sampling sites, and UFP formation pathways. Also, to investigate seasonal and long-term variation of the UFP number concentration, data were collected for the period of 5 years (2007, 2008, 2010, 2011, and 2012) in urban Gwangju. Photochemical and combustion events were found to be responsible for the formation of UFP in the urban Gwangju site, whereas only photochemical event led to the formation of UFP in the coastal Taean site. The highest UFP concentration was found in industrial Yeosu (the average UFP number fractions were 79, 59 and 58% in Yeosu, Gwangju, and Taean, respectively), suggesting that high amount of gas pollutants (e.g., $NO_2$, $SO_2$, and volatile organic carbon (VOC)) emitted from industries and their photochemical reaction contributed for the elevated UFP concentration in the industrial Yeosu site. The UFP fraction also showed a seasonal variation with the peak value in spring (61.5, 54.5, 50.5, and 40.7% in spring, fall, summer, and winter, respectively) at urban Gwangju. Annual average UFP number concentrations in urban Gwangju were $5.53{\times}10^3\;cm^{-3}$, $4.68{\times}10^3\;cm^{-3}$, $5.32{\times}10^3\;cm^{-3}$, $3.99{\times}10^3\;cm^{-3}$, and $2.16{\times}10^3\;cm^{-3}$ in the year 2007, 2008, 2010, 2011, and 2012, respectively. Comparison of the annual average UFP number concentration with urban sites in other countries showed that the UFP concentrations of the Korean sites were lower than those in other urban cities, probably due to lower source strength in the current site. TEM/EDS analysis for the size-selected UFPs showed that the UFPs were classified into various types having different chemical species. Carbonaceous particles were observed in both combustion (soot and organics) and photochemical events (sulfate and organics). In the photochemical event, an internal mixture of organic species and ammonium sulfate/bisulfate was identified. Also, internal mixtures of aged Na-rich and organic species, aged Ca-rich particles, and doughnut shaped K-containing particles with elemental composition of a strong C with minor O, S, and K-likely to be originated from biomass burning nearby agricultural area, were observed. In addition, fly ash particles were also observed in the combustion event, not in the photochemical event.

Pollution characteristics of PM2.5 observed during January 2018 in Gwangju (광주 지역에서 2018년 1월 측정한 초미세먼지의 오염 특성)

  • Yu, Geun-Hye;Park, Seung-Shik;Jung, Sun A;Jo, Mi Ra;Jang, Yu Woon;Lim, Yong Jae;Ghim, Young Sung
    • Particle and aerosol research
    • /
    • v.15 no.3
    • /
    • pp.91-104
    • /
    • 2019
  • In this study, hourly measurements of $PM_{2.5}$ and its major chemical constituents such as organic and elemental carbon (OC and EC), and ionic species were made between January 15 and February 10, 2018 at the air pollution intensive monitering station in Gwangju. In addition, 24-hr integrated $PM_{2.5}$ samples were collected at the same site and analyzed for OC, EC, water-soluble OC (WSOC), humic-like substance (HULIS), and ionic species. Over the whole study period, the organic aerosols (=$1.6{\times}OC$) and $NO_3{^-}$ concentrations contributed 26.6% and 21.0% to $PM_{2.5}$, respectively. OC and EC concentrations were mainly attributed to traffic emissions with some contribution from biomass burning emissions. Moreover, strong correlations of OC with WSOC, HULIS, and $NO_3{^-}$ suggest that some of the organic aerosols were likely formed through atmospheric oxidation processes of hydrocarbon compounds from traffic emissions. For the period between January 18 and 22 when $PM_{2.5}$ pollution episode occurred, concentrations of three secondary ionic species ($=SO{_4}^{2-}+NO_3{^-}+NH_4{^+}$) and organic matter contributed on average 50.8 and 20.1% of $PM_{2.5}$, respectively, with the highest contribution from $NO_3{^-}$. Synoptic charts, air mass backward trajectories, and local meteorological conditions supported that high $PM_{2.5}$ pollution was resulted from long-range transport of haze particles lingering over northeastern China, accumulation of local emissions, and local production of secondary aerosols. During the $PM_{2.5}$ pollution episode, enhanced $SO{_4}^{2-}$ was more due to the long-range transport of aerosol particles from China rather than local secondary production from $SO_2$. Increasing rate in $NO_3{^-}$ was substantially greater than $NO_2$ and $SO{_4}^{2-}$ increasing rates, suggesting that the increased concentration of $NO_3{^-}$ during the pollution episode was attributed to enhanced formation of local $NO_3{^-}$ through heterogenous reactions of $NO_2$, rather than impact by long-range transportation from China.

Variation of Primary Productivity and Phytoplankton Community in the Weirs of Mid and Downstream of the Nakdong River during Fall and Early Winter: Application of Phytoplankton Pigments and CHEMTAX (추계-동계 낙동강 중 하류 보 구간 일차생산력 및 식물플랑크톤 군집조성 변화: 식물플랑크톤 색소와 CHEMTAX 활용)

  • Choi, Jisoo;Min, Jun Oh;Choi, Bohyung;Kang, Jae Joong;Choi, Kwangsoon;Lee, Sang Heon;Shin, Kyung Hoon
    • Korean Journal of Ecology and Environment
    • /
    • v.52 no.2
    • /
    • pp.81-93
    • /
    • 2019
  • Phytoplankton is one of the important primary producers providing organic matter through photosynthesis in aquatic environments. In order to determine a temporal and spatial variation in primary productivity after weir construction in the Nakdong River, we investigated carbon uptake rates using in-situ $^{13}C$ labeling experiments and identified algal communities contributing to primary productivity using HPLC-CHEMTAX analysis from October to December, 2017. The primary productivity gradually decreased from fall to early winter season ($249{\sim}933mgC\;m^{-2}d^{-1}$ in October, $64{\sim}536mgC\;m^{-2}d^{-1}$ in November and $60{\sim}274mgC\;m^{-2}d^{-1}$ in December, respectively). This is attributed to the temporally declining light intensity and the decreasing biomass and physiological activity of phytoplankton in winter. The contribution of diatoms to the phytoplankton community in the Nakdong River was approximately 63% at all the sampling sites and seasons, while the contribution of cryptophytes increased from 9% in October to 32% in November and December. The temporal changes in the primary productivity and the dominant phytoplankton species in the mid and downstream weirs of the Nakdong River was investigated for the first time, after construction of the weirs, and major environmental factors controlling the temporal variation in primary productivity and phytoplankton communities were identified in this study. We suggest that seasonal field investigations will provide further information on the major environmental factors which affect the annual variation of primary productivity and phytoplankton communities.

Optimal Conditions of Mycelial Growth and Exopolysaccharide Production in Submerged Culture of Phellinus baumii (Phellinus baumii으로부터 세포외 다당체 생산의 최적화)

  • Hwang, Hye-Jin;Kim, Sang-Woo;Yun, Jong-Won;Park, Jang-Won
    • Journal of Life Science
    • /
    • v.14 no.1
    • /
    • pp.51-56
    • /
    • 2004
  • The polysaccharide isolated from Phellinus species has been known as a folk remedy, including antitumor and immune-stimulating activities. However, there are lacks of knowledge about mycelial growth and exopolysaccharide (EH) production in its submerged culture. We investigated the optimal conditions on mycelial growth and EPS production in Phellinus baumii. The optimal temperature and initial pH for mycelial growth and EPS production in shake flask culture of P. baumii were proved to be 3$0^{\circ}C$ and pH 5.0, respectively. In case of carbon source, cellobiose and maltose were highly efficient for mycelial growth and fructose and mannitol were also relatively favorable for EPS production. Yeast extract was the most suitable nitrogen source for mycelial growth and EPS production. The composition of optimal culture medium was determined to be fructose 20 g/L, yeast extract 20 g/L, and $CaCl_2$ 0.55 g/L, respectively. Under the optimal culture condition, the maximum mycelial biomass and EPS achieved in a 5-L stirred-tank fermenter were 17.43 g/L and 3.6 g/L, respectively. It was found that the EPS was a glycoprotein onsisted of mainly arginine (14.1%) and glycine (12.0 %) in protein moiety and mainly mannose (48.7%) and arabinose (38.4%) in carbohydrate moiety.

Interaction Between Plants and Rhizobacteria in Phytoremediation of Heavy Metal- Contaminated Soil (중금속 오염 토양의 식물상 복원에 있어 식물과 근권세균의 상호작용)

  • Koo So-Yeon;Cho Kyung-Suk
    • Microbiology and Biotechnology Letters
    • /
    • v.34 no.2
    • /
    • pp.83-93
    • /
    • 2006
  • In heavily industrialized areas, soil sites are contaminated with high concentrations of heavy metals. These pollutants are highly accumulated to the human body through the food web and cause serious diseases. To remove heavy metals from the soil, a potential strategy is the environmental friendly and cost effective phytoremediation. For the enhancement of remediation efficiency, the symbiotic interaction between the plant and plant growth-promoting rhizobacteria (PGPR) has been attended. In this review, the interaction of the plant and PGPR in the heavy metal-contaminated soil has been reviewed. The physicochemical and biological characteristics of the rhlzosphere can influence directly or indirectly on the biomass, activity and population structure of the rhizobacteria. The root exudates are offered to the soil microbes as useful carbon sources and growth factors, so the growth and metabolism of rhizobacteria can be promoted. PGPR have many roles to lower the level of growth-inhibiting stress ethylene within the plant, and also to provide iron and phosphorus from the soil to plant, and to produce phytohormone such as indole acetic acid. The plant with PGPR can grow better in the heavy metal contaminated soil. Therefore higher efficiency of the phytoremediation will be expected by the application of the PGPR.

Soil Chemistry Changes after N, P, and K Fertilization in a Willow(Salix spp.) Bioenergy Plantation (버드나무(Salix spp.) bioenergy 조림지내(造林地內) N, P, K 시비(施肥)가 토양화학성(土壤化學性) 변화(變化)에 미치는 영향(影響))

  • Park, Gwansoo
    • Journal of Korean Society of Forest Science
    • /
    • v.86 no.3
    • /
    • pp.311-318
    • /
    • 1997
  • Chemical properties of soil(N, P, K, Ca, Na, Mg, CEC, and pH) were studied after annual additions of $NH_4NO_3$(336kg/ha N), treble superphosphate(112kg/ha P), and KCl(224kg/ha K) fertilizers in a willow(Salix spp.) bioenergy plantation. Soil samples were collected from November through December 1992 from previously established the fertilized and non-fertilized willow plantation at Tully, New York, U.S.A. in 1987. Total fertilizer additions from 1987 through 1991 were 1,680kg/ha N and 560kg/ha P and 1.120kg/ha K. Fertilization with N, P, and K resulted in no difference in total soil N content between the fertilized and non-fertilized plots, increased soil P and K, decreased base cations ($Ca^{2+}$ and $Mg^{2+}$) and soil pH, and increased soil pH with soil depth. Strong positive correlations of soil carbon to soil N, Ca, Mg, and CEC were noted. Soil C/N ratio in the study plots ranged from 9.6 to 11.2 for all treatment combinations. Significant differences in soil P, K, Ca, and pH between the fertilized and non-fertilized plots indicate that fertilization had changed chemical properties of soil in this fertilizer trial.

  • PDF

Statistical Optimization for Biodegradation of 2,4-Dichlorophenoxyacetic Acid by Soil Isolated Bacterium (토양 분리 박테리아에 의한 2,4-Dichlorophenoxyacetic산의 분해 최적화)

  • Kim, Byunghoon;Myunghee Han;Sungyong Cho;Sungjin Ahn;Lim, Sung-Paal;Sunkyun Yoo
    • Microbiology and Biotechnology Letters
    • /
    • v.31 no.1
    • /
    • pp.83-89
    • /
    • 2003
  • 2,4-Dichlorophenoxyacetic acid (2,4-D) as a widely used herbicide has caused serious environmental problems because of its difficult decomposition in nature. We isolated the strain capable of metabolizing 2,4-D as sole carbon and energy source by an enrichment culture technique from the 2,4-D contaminated soil collected at orchard in Gwangju, Korea. This strain was identified tentatively as Aeromonas sp. NOH2. With this strain, we established the response surface methodology (Box-Behnken Design) to optimize the principle parameters for maximizing biodegradation of 2,4-D such as culture pH, temperature, and nutrient concentration in liquid batch culture. The ranges of parameters were obtained from preliminary works done at our laboratory and chosen as 5.5, 6.5, and 7.5 for pH, 25, 30, and $35^{\circ}C$ for temperature, and 5, 20, and 35 g/1 nutrient concentration. Initial concentration of 2,4-D was 500 ppm and nutrient source was tryptic soy broth. The experimental data were significantly fitted to a second order polynomial equation using multiple regression. The most important parameter influencing 2,4-D degradation and biomass production was nutrient concentration. For 2,4-D degradation, the optimum values of pH and temperature, and nutrient concentration were obtained at pH (6.5), temperature (31.8 to $32.1^{\circ}C$), and nutrient concentration (29.6 to 30.1.0 g/1).

Identification of PM10 Chemical Characteristics and Sources and Estimation of their Contributions in a Seoul Metropolitan Subway Station (서울시 지하역사에서 PM10의 화학적 특성과 오염원의 확인 및 기여도 추정)

  • Park, Seul-Ba-Sen-Na;Lee, Tae-Jung;Ko, Hyun-Ki;Bae, Sung-Joon;Kim, Shin-Do;Park, Duckshin;Sohn, Jong-Ryeul;Kim, Dong-Sool
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.1
    • /
    • pp.74-85
    • /
    • 2013
  • Since the underground transportation system is a closed environment, indoor air quality problems may seriously affect many passengers' health. The purpose of this study was to understand $PM_{10}$ characteristics in the underground air environment and further to quantitatively estimate $PM_{10}$ source contributions in a Seoul Metropolitan subway station. The $PM_{10}$ was intensively collected on various filters with $PM_{10}$ aerosol samplers to obtain sufficient samples for its chemical analysis. Sampling was carried out in the M station on the Line-4 from April 21 to 28, July 13 to 21, and October 11 to 19 in the year of 2010 and January 11 to 17 in the year of 2011. The aerosol filter samples were then analyzed for metals, water soluble ions, and carbon components. The 29 chemical species (OC1, OC2, OC3, OC4, CC, PC, EC, Ag, Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Pb, Si, Ti, V, Zn, $Cl^-$, $NO_3{^-}$, $SO_4{^{2-}}$, $Na^+$, $NH_4{^+}$, $K^+$, $Mg^{2+}$, $Ca^{2+}$) were analyzed by using ICP-AES, IC, and TOR after proper pretreatments of each sample filter. Based on the chemical information, positive matrix factorization (PMF) model was applied to identify the $PM_{10}$ sources and then six sources such as biomass burning, outdoor, vehicle, soil and road dust, secondary aerosol, ferrous, and brakewear related source were classified. The contributions rate of their sources in tunnel are 4.0%, 5.8%, 1.6%, 17.9%, 13.8% and 56.9% in order.

The effects of temperature on the growth rate and nitrogen content of invasive Gracilaria vermiculophylla and native Gracilaria tikvahiae from Long Island Sound, USA

  • Gorman, Leah;Kraemer, George P.;Yarish, Charles;Boo, Sung Min;Kim, Jang K.
    • ALGAE
    • /
    • v.32 no.1
    • /
    • pp.57-66
    • /
    • 2017
  • The red alga Gracilaria vermiculophylla, a species native to the waters of Korea and Japan, has invaded marine coastal areas of Europe and the Americas, thriving in conditions that differ from those of its native habitat. In recent years, G. vermiculophylla has been discovered in the Long Island Sound (LIS) estuary growing alongside the native congener Gracilaria tikvahiae. The goal of this study was to determine whether the two strains of G. vermiculophylla from different regions of the world have evolved genetic differences (i.e., ecotypic differentiation) or if the physiological performance of the strains simply reflects phenotypic plasticity. Two strains of G. vermiculophylla (isolated in Korea and LIS) and a strain of the LIS native G. tikvahiae were grown for four weeks under temperatures ranging from 20 to $34^{\circ}C$ using a temperature gradient table (all other environmental conditions were kept constant). At the end of each week, wet weight of each sample was recorded, and thalli were reduced to the original stocking density of $1gL^{-1}$ (excess biomass was preserved for tissue carbon and nitrogen analysis). Generally, the growth rates of Korean G. vermiculophylla > LIS G. vermiculophylla > G. tikvahiae. After one week of growth G. tikvahiae grew 9.1, 12.0, 9.4, and 0.2% $d^{-1}$, at temperatures of 20, 24, 29, and $34^{\circ}C$, respectively, while G. vermiculophylla (LIS) grew 6.6, 6.2, 5.7, and 3.6% $d^{-1}$. G. vermiculophylla (Korea) grew 15.4, 22.9, 23.2, and 10.1% $d^{-1}$, much higher than the two strains currently inhabiting the LIS. On average, the LIS G. vermiculophylla strain contained 4-5% DW N, while the Korean strain and G. tikvahiae had more modest levels of 2-3% N DW. However, tissue N content declined as temperature increased in LIS and Korean G. vermiculophylla. The non-native haplotype may have evolved genetic differences resulting in lower growth capacity while concentrating significantly more nitrogen, giving the non-native a competitive advantage.