• Title/Summary/Keyword: biology nitrogen fixation

Search Result 36, Processing Time 0.02 seconds

Effects of Environmental Factors on Growth and Nitrogen Fixation Activity of Autumn Olive (Elaeognus umbellata) Seedlings (보리수나무 유식물의 생장과 질소고정 활성에 대한 환경요인의 영향)

  • 송승달
    • Journal of Plant Biology
    • /
    • v.37 no.3
    • /
    • pp.387-394
    • /
    • 1994
  • Effects of environmental factors of light, temperature, nitrogen sources and water stress were analyzed quantitatively on the nodule formation and nitrogen fixation activity of autumn olive plant (Elaeagnu$ umbellala Thunb.) during the seedling growth. Seedlings showed the maximum nitrogenase activity of $72.5\;\mu\textrm{M}\;C_2H_4{\cdot}g\;fr\;wt\;nodule^{-1}{\cdot}h^{-1}$ in the early nodulation stage. The relative growth rate and T/R ratio changed from $1.60%{\cdot}d^{-1}$ and 1.12 in the earlier stage to $3.75%{\cdot}d^{-1}$ and 2.31 in the later stage, respectively. light conditions of 20-25, 1015 and 4-6% resulted in decreases of 41, 54 and 71% of the nitrogenase activity, respectively. Nodules incubated in 15, 20, 25 and $30^{\circ}C$ showed the activities of 5.4, 24.7, 51.6 and $58.5\;\mu\textrm{M}\;C_2H_4{\cdot}g\;fr\;wt\;nodule^{-1}{\cdot}h^{-1}$ respectively. Pretreatment with low temperature ($15^{\circ}C$) followed incubation at $30^{\circ}C$ attained higher nitrogenase activity ($66.5\;\mu\textrm{M}\;C_2H_4{\cdot}g\;fr\;wt\;nodule^{-1}{\cdot}h^{-1}$) than that with higher temperature ($35^{\circ}C$). The oxygen pressure above 16 kPa is necessary for saturation of the nodule activity, but the activity was inhibited severely by physical impact such as the exision or isolation of nodules from the root. The relative activities of early nodules grown in pH 5.5, 6.5 and 8.0 were 89, 100 and 40% and those grown in 1 and 3 mM of $NO_3\;and\;NH_4$ were 6, 1 and 68, 50%, respectively. Watering levels of 20, 50 and 100 mL during the seedling growth resulted in 35, 120 and 8 mg of nodule formation and 33.6, 58.4 and $8.4\;\mu\textrm{M}\;C_2H_4{\cdot}g\;fr\;wt\;nodule^{-1}{\cdot}h^{-1}$ of the nitrogenase activity, respectively. Water stress with 86% decrease of soil water content caused temporary wilting point of leaf and a complete disappearance of nitrogenase activity of nodules, though the water content and transpiration rate in plant were reduced to 90 and 53%, respectively.tively.

  • PDF

1-Aminocyclopropane-1-Carboxylate Deaminase from Pseudomonas stutzeri A1501 Facilitates the Growth of Rice in the Presence of Salt or Heavy Metals

  • Han, Yunlei;Wang, Rui;Yang, Zhirong;Zhan, Yuhua;Ma, Yao;Ping, Shuzhen;Zhang, Liwen;Lin, Min;Yan, Yongliang
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.7
    • /
    • pp.1119-1128
    • /
    • 2015
  • 1-Aminocyclopropane-1-carboxylate (ACC) deaminase, which is encoded by some bacteria, can reduce the amount of ethylene, a root elongation inhibitor, and stimulate the growth of plants under various environmental stresses. The presence of ACC deaminase activity and the regulation of ACC in several rhizospheric bacteria have been reported. The nitrogen-fixing Pseudomonas stutzeri A1501 is capable of endophytic association with rice plants and promotes the growth of rice. However, the functional identification of ACC deaminase has not been performed. In this study, the proposed effect of ACC deaminase in P. stutzeri A1501 was investigated. Genome mining showed that P. stutzeri A1501 carries a single gene encoding ACC deaminase, designated acdS. The acdS mutant was devoid of ACC deaminase activity and was less resistant to NaCl and NiCl2 compared with the wild-type. Furthermore, inactivation of acdS greatly impaired its nitrogenase activity under salt stress conditions. It was also observed that mutation of the acdS gene led to loss of the ability to promote the growth of rice under salt or heavy metal stress. Taken together, this study illustrates the essential role of ACC deaminase, not only in enhancing the salt or heavy metal tolerance of bacteria but also in improving the growth of plants, and provides a theoretical basis for studying the interaction between plant growth-promoting rhizobacteria and plants.

The Hypernodulating nts Mutation Induces Jasmonate Synthetic Pathway in Soybean Leaves

  • Seo, Hak Soo;Li, Jinjie;Lee, Sun-Young;Yu, Jae-Woong;Kim, Kil-Hyun;Lee, Suk-Ha;Lee, In-Jung;Paek, Nam-Chon
    • Molecules and Cells
    • /
    • v.24 no.2
    • /
    • pp.185-193
    • /
    • 2007
  • Symbiotic nitrogen fixation with nitrogen-fixing bacteria in the root nodules is a distinctly beneficial metabolic process in legume plants. Legumes control the nodule number and nodulation zone through a systemic negative regulatory system between shoot and root. Mutation in the soybean NTS gene encoding GmNARK, a CLAVATA1-like serine/threonine receptor-like kinase, causes excessive nodule development called hypernodulation. To examine the effect of nts mutation on the gene expression profile in the leaves, suppression subtractive hybridization was performed with the trifoliate leaves of nts mutant 'SS2-2' and the wild-type (WT) parent 'Sinpaldalkong2', and 75 EST clones that were highly expressed in the leaves of the SS2-2 mutant were identified. Interestingly, the expression of jasmonate (JA)-responsive genes such as vspA, vspB, and Lox2 were upregulated, whereas that of a salicylate-responsive gene PR1a was suppressed in the SS2-2 mutant. In addition, the level of JA was about two-fold higher in the leaves of the SS2-2 mutant than in those of the WT under natural growth conditions. Moreover, the JA-responsive gene expression persists in the leaves of SS2-2 mutant without rhizobia infection in the roots. Taken together, our results suggest that the nts mutation increases JA synthesis in mature leaves and consequently leads to constitutive expression of JA-responsive genes which is irrelevant to hypernodulation in the root.

Effects of fire on Vegetation and Soil nutrients in Mt. palgong (팔공산에서 식생과 토양에 미치는 산불의 영향)

  • Sim, Hak-Bo;Kim, Woen
    • The Korean Journal of Ecology
    • /
    • v.21 no.5_1
    • /
    • pp.465-473
    • /
    • 1998
  • This study was carried out to investigate the developmental process of plant community during the secondary succession and changes of soil properties in the burned areas lapsed 28 years after the forest fire in Mt.Palgong. The forest fire occurred on March, 1969 and the red pine (pinus densiflora) forest and its floor vegetation were burned down. The results are summarized as follows: the floristic composition of burned and unburned areas were composed of 49 and 48 species of vascular plants, respectively. The dominant species based on SDR4 of the burned sites were Lespedeza maximowicxii(87.75), Carex humilis (62.94), Rhododendron schippenbachii(55.78) and Miscanthus sinensis var.purpurascens (51.94). In contrast, Pinus densiflora (81.17), Quercus serrata (53.58)m Carex humilis (53.11) and Miscanthus sinenis var. purpuracens (52.42) were dominant in the unburned area. The biological spectra showed the $H-D_1-R_5-e$ type in both areas. The indices of similarity (CCs) between the two areas were 0.80. Degree of succession (DS) was 734 in the burned area and 809 in the unburned area. The species diversity (H) and evenness indices (e) in the burned and unburned areas were 2.05, 2.13 and 0.53, 0.55, respectively. Dominance index (C) in the burned and unburned areas were 0.30 and 0.32, respectively. Soil properties such as soil pH, content of organic matter, total nitrogen, total carbon, exchangeable potassium, sodium, calcium, and magnesium in burned area were comparatively higher than those of unburned area. Monthly changes of soil properties were of little significance except for some cases. These results suggest that there was relationship between trend of vegetation recovery and the changes of soil properties after the forest fire. Mixed forestation of fire-resistant species and nitrogen fixation species will be effective for reforestation after the forest fire.

  • PDF

MAP Kinase-Mediated Negative Regulation of Symbiotic Nodule Formation in Medicago truncatula

  • Ryu, Hojin;Laffont, Carole;Frugier, Florian;Hwang, Ildoo
    • Molecules and Cells
    • /
    • v.40 no.1
    • /
    • pp.17-23
    • /
    • 2017
  • Mitogen-activated protein kinase (MAPK) signaling cascades play critical roles in various cellular events in plants, including stress responses, innate immunity, hormone signaling, and cell specificity. MAPK-mediated stress signaling is also known to negatively regulate nitrogen-fixing symbiotic interactions, but the molecular mechanism of the MAPK signaling cascades underlying the symbiotic nodule development remains largely unknown. We show that the MtMKK5-MtMPK3/6 signaling module negatively regulates the early symbiotic nodule formation, probably upstream of ERN1 (ERF Required for Nodulation 1) and NSP1 (Nod factor Signaling Pathway 1) in Medicago truncatula. The overexpression of MtMKK5 stimulated stress and defense signaling pathways but also reduced nodule formation in M. truncatula roots. Conversely, a MAPK specific inhibitor, U0126, enhanced nodule formation and the expression of an early nodulation marker gene, MtNIN. We found that MtMKK5 directly activates MtMPK3/6 by phosphorylating the TEY motif within the activation loop and that the MtMPK3/6 proteins physically interact with the early nodulation-related transcription factors ERN1 and NSP1. These data suggest that the stress signaling-mediated MtMKK5/MtMPK3/6 module suppresses symbiotic nodule development via the action of early nodulation transcription factors.

Diversity of Root-Associated Paenibacillus spp. in Winter Crops from the Southern Part of Korea

  • CHEONG HOON;PARK SOO-YOUNG;RYU CHOONG-MIN;KIM JIHYUN F.;PARK SEUNG-HWAN;PARK CHANG SEUK
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.6
    • /
    • pp.1286-1298
    • /
    • 2005
  • The genus Paenibacillus is a new group of bacilli separated from the genus Bacillus, and most of species have been isolated from soil. In the present study, we collected 450 spore-forming bacilli from the roots of winter crops, such as barley, wheat, onion, green onion, and Chinese cabbage, which were cultivated in the southern part of Korea. Among these 450 isolates, 104 Paenibacillus-like isolates were selected, based on their colony shape, odor, color, and endospore morphology, and 41 isolates were then finally identified as Paenibacillus spp. by 16S rDNA sequencing. Among the 41 Paenibacillus isolates, 23 were classified as P. polymyxa, a type species of the genus Paenibacillus, based on comparison of the 16S rDNA sequences with those of 32 type strains of the genus Paenibacillus from the GenBank database. Thirty-five isolates among the 41 Paenibacillus isolates exhibited antagonistic activity towards plant fungal and bacterial pathogens, whereas 24 isolates had a significant growth-enhancing effect on cucumber seedlings, when applied to the seeds. An assessment of the root-colonization capacity under gnotobiotic conditions revealed that all 41 isolates were able to colonize cucumber roots without any significant difference. Twenty-one of the Paenibacillus isolates were shown to contain the nifH gene, which is an indicator of $N_{2}$ fixation. However, the other 20 isolates, including the reference strain E681, did not incorporate the nifH gene. To investigate the diversity of the isolates, a BOX-PCR was performed, and the resulting electrophoresis patterns allowed the 41 Paenibacillus isolates to be divided into three groups (Groups A, B, and C). One group included Paenibacillus strains isolated mainly from barley or wheat, whereas the other two groups contained strains isolated from diverse plant samples. Accordingly, the present results showed that the Paenibacillus isolates collected from the rhizosphere of winter crops were diverse in their biological and genetic characteristics, and they are good candidates for further application studies.