• Title/Summary/Keyword: biological stability

Search Result 838, Processing Time 0.022 seconds

Effects of Partial Habitat Restoration by a Method Suitable for Riverine Environments in Korea

  • Lee, Chang-Seok;Cho, Yong-Chan;Shin, Hyun-Cheol;Lee, Seon-Mi;Cho, Hyun-Je
    • Journal of Ecology and Environment
    • /
    • v.30 no.2
    • /
    • pp.171-177
    • /
    • 2007
  • Korean rivers and their surrounding environments have been used excessively for rice production in the past and more recently for construction of urban areas to accomodate the rapidly increasing population. Affected Korean rivers experience dramatic fluctuations in their water levels and have faster currents compared with those in other countries. In order to restore more natural conditions in rivers experiencing such conditions, we employed a partial restoration method, which is designed to achieve physical and biological stability simultaneously. Concrete blocks were introduced to increase the river's physical stability during floods, and terra cottem, a soil enhancer, was used to reduce water loss due to intense heat. These interventions increased the river's ability to hold water and thereby promoted plant growth. This restoration method increased vegetation coverage and species diversity in treated areas, and changed the species composition in treated areas to more closely approximate that of the control site. These results suggest that this method is effective in restoring damaged habitats to more natural conditions.

Design and Implementation of Medical Compound Stimulator Using Low/High Frequency and Cooling Stimulation (저주파/고주파와 냉자극을 이용한 의료용 조합 자극기의 설계 및 구현)

  • Yoon, Wan-Oh;Kang, Suk-Youb;Jung, Jin-Ha;Choi, Sang-Bang
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.1
    • /
    • pp.82-87
    • /
    • 2008
  • In this paper, the study was carried out to design and implement the medical compound stimulator based on the preexisting individual medical stimulators with Low frequency, High frequency and cooling stimulation. The proposed equipment is designed to compound all the functions including a cooling stimulation with a range of $0{\sim}20^{\circ}C$ and the verified low and high frequencies of 250Hz, 500Hz, 1KHz and 1MHz respectively from the previous clinical experiment with a consideration of its credibility and efficiency. Also, it was constructed by using a new technique, thermoelectricity semiconductor with a consideration of miniaturization and stability. In accordance with patients' treatment purpose, the hand piece of low frequency/cooling stimulation and High frequency/cooling stimulation were separately designed for convenience. The frequency, accuracy and other factors of implemented medical compound stimulator was satisfied according to its measurement. It was also tested by Korean Testing Laboratory (KTL) for its stability and efficacy and it confirmed that the medical compound stimulator is suitable for use as it fits in with the medical equipment standards.

Effect of Particle Size on the Solubility and Dispersibility of Endosperm, Bran, and Husk Powders of Rice

  • Lee, Jeong-Eun;Jun, Ji-Yeon;Kang, Wie-Soo;Lim, Jung-Dae;Kim, Dong-Eun;Lee, Kang-Yeol;Ko, Sang-Hoon
    • Food Science and Biotechnology
    • /
    • v.17 no.4
    • /
    • pp.833-838
    • /
    • 2008
  • Size effects of rice product powders on physical properties including suspension stability were investigated in this study. Endosperm, bran, and husk powders of rice with different size particles were prepared using the pin crusher or the ultrafine air mill. The physical properties of the powders were examined using particle size analysis, scanning electron microscopy, and spectrophotometry. The peak of the volume-weighted particle distribution of ultrafine endosperm particles was at $5.4\;{\mu}m$ whereas those of the bran and the husk appeared at 65 and $35\;{\mu}m$, respectively. Ultrafine particles of the endosperm and the husks dispersed better than larger-sized particles. As time elapsed, the dispersibility decreased, but the ultrafine particles were precipitated at the slowest rate. Our results suggest that ultrafine particles, including future nanosized particles, provide improved solubility and dispersibility resulting in better stability in the food colloidal suspension.

Optimal Conditions for Propagation in Bottom and Top Brewing Yeast Strains

  • Cheong, Chul;Wackerbauer, Karl;Lee, Si-Kyung;Kang, Soon-Ah
    • Food Science and Biotechnology
    • /
    • v.17 no.4
    • /
    • pp.739-744
    • /
    • 2008
  • The method of yeast propagation has an influence on yeast physiology, fermentation ability, flocculation rate, and taste stability of beer. In order to find optimal conditions for propagation, several parameters were investigated in combinations. The bottom brewing yeast grown at $10^{\circ}C$ indicated that a higher flocculation capacity during the $1^{st}$ fermentation. However, the taste stability and the aroma profile were not affected by parameters of propagation investigated. The beer quality was rather affected by storage duration. In addition, a correlation between tasting and chemiluminescence was found at the beer, which was produced using bottom brewing yeast. The propagation at $10-25^{\circ}C$ with addition of zinc ion indicated the best condition to improve fermentation ability, flocculation rate, and filterability for bottom brewing yeast, whereas the propagation at $30^{\circ}C$ with addition of zinc ion showed the best condition to increase fermentation ability for top brewing yeasts.

RNases and their role in Cancer

  • Beeram, Eswari
    • The Korean Journal of Food & Health Convergence
    • /
    • v.5 no.2
    • /
    • pp.27-34
    • /
    • 2019
  • RNases plays a pivotal role in biological system and different RNases are known for their various functions like angiogenesis, immunological response, antiviral, antitumour activity and apoptosis. In which anti tumour activity of RNase is proved to improve genome stability in normal cells up to some extent. RNases like RNase L shows antiviral and antitumour activities against virus infected cells and cancer cells through 2'-5' oligo adenylate pathway and induces RNaseL dependent apoptosis where as RNase A modulates various proliferative pathways like MAP kinase, JNK, TGF-${\beta}$ and activates apoptosis in cancer cells and promotes immunological response through processing of Ags. IRE1 RNase acts as both tumour suppressor gene and oncogene in normal and cancer cells and involved in both antitumour and tumorigenic activities. RNase III upregulates miRNA in cancer cells there by acting via posttranscriptional level and proven to be effective against colorectal adeno carcinoma. In addition to this IRE1 RNase is a double edged sword through RIDD pathway in ER (18). To some of the cancers expressing c-myc IRE1 acts as tumour suppressor where as in cancers where myc is downregulated IRE1 acts as tumour provoking through RIDD pathway (18). Thus RNases play vital role in regulating the genome stability.

Characterization of Novel Amylase-Sensitive, Anti-Listerial Class IId Bacteriocin, Agilicin C7 Produced by Ligilactobacillus agilis C7

  • Jeong Min Yoo;Ji Hoon Song;Robie Vasquez;In-Chan Hwang;Jae Seung Lee;Dae-Kyung Kang
    • Food Science of Animal Resources
    • /
    • v.43 no.4
    • /
    • pp.625-638
    • /
    • 2023
  • Among various biological agents, bacteriocins are important candidates to control Listeria monocytogenes which is a foodborne pathogen. In this study, a novel bacteriocin, named agilicin C7, was isolated from Ligilactobacillus agilis C7 showing inhibitory activity against L. monocytogenes. Agilicin C7 biosynthesis gene was characterized by bioinformatics analyses and heterologously expressed in Escherichia coli for further study. The anti-listeria activity of recombinant agilicin C7 (r-agilicin C7) was lost by proteases and α-amylase, suggesting that agilicin C7 is a glycoprotein. r-Agilicin C7 has wide pH and thermal stability and is also stable in various organic solvents. It destroyed L. monocytogenes by damaging the integrity of the cell envelope. These properties of r-agilicin C7 indicate that agilicin C7 is a novel amylase-sensitive anti-listerial Class IId bacteriocin. Physicochemical stability and inhibitory activity against L. monocytogenes of r-agilicin C7 suggest that it can be applied to control L. monocytogenes in the food industry, including dairy and meat products.

Physical and Thermodynamic Properties of Imidazolium Ionic Liquids (이미다졸계 이온성 액체의 물성)

  • Oh, Sooyeoun;Kang, Jeong Won;Park, Byung Heung;Kim, Ki-Sub
    • Korean Chemical Engineering Research
    • /
    • v.50 no.4
    • /
    • pp.708-712
    • /
    • 2012
  • Ionic liquids (ILs) existing as liquid state at room temperature are composed of a immense heterocyclic cation and inorganic anion which is smaller than cation's size. Thus, the species of cation and anion as well as the length of alkyl group on the cation have influence on their physical properties. Their outstanding properties such as non-volatility, thermal stability and wide range of electrochemical stability make these materials excellent candidates for green solvent which can substitute the conventional organic solvents. In this study, ILs based on imidazolium cation have been synthesized such as 1-butyl-3-methylimidazolium bromide ([BMIM][Br]), 1-butyl-3-methylimidazolium chloride ([BMIM] [Cl]), 1-butyl-3-methylimidazolium iodide ([BMIM][I]), and 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][$BF_4$]). The density, viscosity, refractive index, heat capacity and ionic conductivity of [BMIM][Br], [BMIM][I], and [BMIM] [$BF_4$] were measured over range of temperature of 293.2 to 323.2 K. The density and refractive index values of [BMIM][I] were the highest among three ILs and the viscosity values of [BMIM][Br] were the highest among three ILs. The heat capacities [BMIM][$BF_4$] were higher than those of [BMIM][Br]. The ionic conductivities of [BMIM][$BF_4$] were higher than those of [BMIM][I].

Quality stability of vinegar pickled sardine during storage (정어리 초절임제품의 저장중 품질안정성)

  • Lee, Eung-Ho;Lee, Jeong-Suk;Kim, Jin-Soo;Oh, Kwang-Soo;Cho, Soon-Yeong
    • Applied Biological Chemistry
    • /
    • v.36 no.5
    • /
    • pp.346-351
    • /
    • 1993
  • In present paper, we examined the quality stability of vinegar pickled sardine during storage. The moisture content of all samples showed a little change, while pH and volatile basic nitrogen content of pickled sardine processed with vinegar seasoning solution mixed antioxidants increased during storage at ambient temperature. The viable cell counts and histamine content of vinegar pickled sardine increased very standingly during storage at ambient temperature, while increased vely slowly during cold storage. The thiobarbituric acid value and peroxide value of vinegar pickled sardine prepared without antioxidants increased up to 60 days and then decreased during cold storage. In case of changes in fatty acid composition of vinegar pickled sardine prepared without antioxidants during cold, percentage of polyenes such as 20 : 5 and 22 : 6 decreased. In case of the results for texture profile analysis of vinegar pickled sardine treated with antioxidants during storage at ambient temperature, the hardness and toughness decreased, while the cohesiveness and elasticity showed a little changes. Judging from the results of chemical and sensory evaluation, the product B, sardine pickled in vinegar seasoning solution mixed with antioxidants could be keeped on freshness and retarded on lipid oxidation until 90 days during storage at $5^{\circ}C$.

  • PDF

Studies on the processing of rapid fermented anchovy prepared with low salt contents by adapted microorganism. -3. Processing of low salt fermented anchovy with proteolytic bacteria and quality stability during storage- (미생물을 이용한 저식염 멸치젓의 속성발효에 관한 연구 -3. 단백질분해세균을 이용한 저식염 멸치젓의 제조 및 저장중의 품질 안정성-)

  • Cha, Yong-Jun;Lee, Kang-Hee;Lee, Eung-Ho;Kim, Jin-Soo;Joo, Dong-Sik
    • Applied Biological Chemistry
    • /
    • v.33 no.4
    • /
    • pp.330-336
    • /
    • 1990
  • In order to Process rapid fermented anchovy with low salt contents, processing condition of rapid fermented anchovy by proteolytic bacteria, and its chemical composition and quality stability during storage were examined. Culture was performed(pH 7.0, $40^{\circ}C$, 45strokes/min) for 15hrs after the addition of 1% of NaCl, 1% of sodium erythorbate and 20m1 of B. licheniformis p-5 cultures($3.2{\times}10^4cells/ml$) to 100g of raw anchovy, and then low salt fermented anchovy as final product was made by adding of several(3% of NaCl, 4% of KCI, 4% of ethyl alcohol(w/v), 0.5% of ginger, 0.5% of garlic powder) for stability and flavor enhancement. During 60days of storage, histamine contents was adequate in a food sanitation aspect, and microflora decreased sharply while volatile basic nitrogen increased slowly. Free amino acids are the major part in unique fermented anchovy taste. The volatile fatty acids is the most important component in the anchovy's flavor. From the results of experiments, it was supposed that rapid fermented anchovy processed with proteolytic bacteria was suitable.

  • PDF

Effects of concentrations and types of neutral salts on the foaming properties of sodium caseinate (중성염의 종류 및 농도가 sodium caseinate의 거품성에 미치는 영향)

  • Yang, Seung-Taek;Park, Hyung-Sun
    • Applied Biological Chemistry
    • /
    • v.36 no.6
    • /
    • pp.434-439
    • /
    • 1993
  • To investigate the effects of neutral salts on the foaming properties of sodium caseinate, turbidity, surface tension, absolute viscosity, foaming ability and foam stability of the caseinate solutions(5%, w/v) with added NaF, $Na_2SO_4$, NaCl, $NaNO_3$, and NaSCN at concentrations of 0.1, 0.5, 1.0, 1.5 and 2.0 M were examined. NaCl and $NaNO_3$ improved the foaming ability compared to sodium caseinate without salt, and also $Na_2SO_4$ and NaF did the foaming ability at the concentrations of 0.1M and 0.5M, while NaSCN did not improve the foaming ability. For foaming ability optimal concentrations of the salts were 0.5, 1.5, and 1.0 M in $Na_2SO_4$, NaCl, and NaSCN, respectively. Additions of $Na_2SO_4$, NaF and $NaNO_3$ at 0.5 M concentrations improved the foam stability of sodium caseinate by 825%, 615%, and 53% compared to control, while those of NaSCN reduced foam stability.

  • PDF