DOI QR코드

DOI QR Code

RNases and their role in Cancer

  • Beeram, Eswari (Department of biochemistry, Sri Venkateswara University)
  • 투고 : 2019.01.18
  • 심사 : 2019.02.10
  • 발행 : 2019.03.30

초록

RNases plays a pivotal role in biological system and different RNases are known for their various functions like angiogenesis, immunological response, antiviral, antitumour activity and apoptosis. In which anti tumour activity of RNase is proved to improve genome stability in normal cells up to some extent. RNases like RNase L shows antiviral and antitumour activities against virus infected cells and cancer cells through 2'-5' oligo adenylate pathway and induces RNaseL dependent apoptosis where as RNase A modulates various proliferative pathways like MAP kinase, JNK, TGF-${\beta}$ and activates apoptosis in cancer cells and promotes immunological response through processing of Ags. IRE1 RNase acts as both tumour suppressor gene and oncogene in normal and cancer cells and involved in both antitumour and tumorigenic activities. RNase III upregulates miRNA in cancer cells there by acting via posttranscriptional level and proven to be effective against colorectal adeno carcinoma. In addition to this IRE1 RNase is a double edged sword through RIDD pathway in ER (18). To some of the cancers expressing c-myc IRE1 acts as tumour suppressor where as in cancers where myc is downregulated IRE1 acts as tumour provoking through RIDD pathway (18). Thus RNases play vital role in regulating the genome stability.

키워드

참고문헌

  1. Abu-Zhayia, E. R., Khoury-Haddad, H., Guttmann-Raviv, N., Serruya, R., Jarrous, N., & Ayoub, N. (2017). A role of human RNase P subunits, Rpp29 and Rpp21, in homology directed-repair of double-strand breaks. Scientific Reports, 7, 1002. DOI:10.1038/s41598-017-01185-6.
  2. Ardelt, W., Ardelt, B., & Darzynkiewicz, Z. (2009). Ribonucleases as potential modalities in anticancer therapy. Eur J Pharmacol, 625(1-3), 181-189. https://doi.org/10.1016/j.ejphar.2009.06.067
  3. Acharya, A., Das, I., Chandhok, D., & Saha, T. (2010). Redox regulation in cancer A double-edged sword with therapeutic potential. Oxidative Medicine and Cellular Longevity, 3(1), 23-34. https://doi.org/10.4161/oxim.3.1.10095
  4. Babaei, F., Ahmadi, A., Rezaei, F., Jalilvand, S., Ghavami, N., Mahmoudi, M., Abiri, R., Kondori, N., Nategh, R., & Azad, T. M. (2015). Xenotropic Murine Leukemia Virus-Related Virus and RNase L R462Q Variants in Iranian Patients With Sporadic Prostate Cancer. Iran Red Crescent Med J., 17(12), e19439.
  5. Bettoun, D. J., Scafonas, A., Rutledge, S. J., Hodor, P., Chen, O., Gambone, C., Vogel, R., McElwee-Witmer, S., Bai, C., Freedman, L., & Schmidt, A. (2005). Interaction between the Androgen Receptor and RNase L Mediates a Cross-talk between the Interferon and Androgen Signaling Pathways. THE Journal Of Biological Chemistry, 280(47), 38898-38901. https://doi.org/10.1074/jbc.C500324200
  6. Cobaleda, C., & Sanchez-Garcia, I. (2000). In vivo inhibition by a site-specific catalytic RNAsubunit of RNase P designed against the BCR-ABL oncogenic products: a novel approach for cancer treatment. BLOOD, 95(3), 731-737 https://doi.org/10.1182/blood.v95.3.731.003k28_731_737
  7. Court, D. L., Gan, J., Liang, W. H., Shaw, G. X., Tropea, J. E., Costantino, N., Waugh, D. S., & Ji, X. (2013). RNase III Genetics and function structure and mechanism. Annual Review of Genetics, 47, 405-431 https://doi.org/10.1146/annurev-genet-110711-155618
  8. Dickson, K. A., Haigis, M C., & Raines, R. T. (2005). Ribonuclease Inhibitor: Structure and Function. Prog Nucleic Acid Res Mol Biol., 80, 349-437. https://doi.org/10.1016/S0079-6603(05)80009-1
  9. Fang, L., Du, W. W., Lyu, J., Dong, J., Zhang, C., Yang, W., He, A., Kwok, Y. S. S., Ma, J., Wu, N., Li, F., Awan, F. M., He, C., Yang, B. L., Peng, C., MacKay, H. J., Yee, A. J., & Yang, B. B. (2018). Enhanced breast cancer progression by mutant p53 is inhibited by the circular RNA circ-Ccnb1. Cell Death & Differentiation, 25, 2195-2208. https://doi.org/10.1038/s41418-018-0115-6.
  10. Fiorini, C., Gotte, G., Donnarumma, F., Picone, D., & Donadelli, M. (2014) Bovine seminal ribonuclease triggers Beclin1-mediated autophagic cell death in pancreatic cancer cells. Biochimica et Biophysica Acta, 1843, 976-984. https://doi.org/10.1016/j.bbamcr.2014.01.025
  11. Gene ID: 11727, Ang angiogenin, ribonuclease, RNase A family, 5 [ Mus musculus (house mouse) ]
  12. Gill, T., Cai, T., Aulds, J., Wierzbicki, S., & Schmitt, M. E. (2004). RNase MRP Cleaves the CLB2 mRNA To Promote Cell Cycle Progression: Novel Method of mRNA Degradation. Molecular And Cellular Biology, 24(3), 945-953. https://doi.org/10.1128/MCB.24.3.945-953.2004
  13. Goparaju, C. M., Blasberg, J. D., Volinia, S., Palatini, J., Ivanov, S., Donington, J. S., Croce, C., Carbone, M., Yang, H., & Pass, H. I. (2011). Onconase mediated NFK$\beta$ downregulation in malignant pleural mesothelioma. Oncogene, 30(24), 2767-2777. https://doi.org/10.1038/onc.2010.643
  14. Kim, S., Song, M. L., Min, H., Hwang, I., Baek, S. K., Kwon, T. K., & Park, J. W. (2017). miRNA biogenesis-associated RNase III nucleases Drosha and Dicer are upregulated in colorectal adenocarcinoma. ONCOLOGY LETTERS, 14, 4379-4383. https://doi.org/10.3892/ol.2017.6674
  15. Kumar, G. R., Chikati, R., Pandrangi, S. L., Kandapal, M., Sonkar, K., Gupta, N., Mulakayala, C., Jagannadham, M. V., Kumar, C. S., Saxena, S., & Das, M. D. (2012). Molecular docking and dynamics simulations of A.niger RNase from Aspergillus niger ATCC26550: for potential prevention of human cancer. J Mol Model. DOI 10.1007/s00894-012-1587-9.
  16. Lhomond, S., Avril, T., Dejeans, N., Voutetakis, K., Doultsinos, D., McMahon, M., Pineau, R., Obacz, J., Papadodima, O., Jouan, F., Bourien, H., Logotheti, M., Jégou, G., Pallares-Lupon, N., Schmit, K., Le Reste, P. J., Etcheverry, A., Mosser, J., Barroso, K. Vauleon, E., Maurel, M., Samali, A., Patterson, J. B., Pluquet, O., Hetz, C., Quillien, V., Chatziioannou, A., & Chevet, E. (2018). Dual IRE1 RNase functions dictate glioblastoma development. EMBO Molecular Medicine, 10(3), e7929. https://doi.org/10.15252/emmm.201707929
  17. Li, G., Xiang, Y., Sabapathy, K., & Silverman, R. H. (2004).An Apoptotic Signaling Pathway in the Interferon Antiviral Response Mediated by RNase L and c-Jun NH2-terminal Kinase. The Journal of Biological chemistry, 279(2), 1123-1131. https://doi.org/10.1074/jbc.M305893200
  18. Liu, Z. C., Cao, K., Xiao, Z. H., Qiao, L., Wang, X. G., Shang, B., Jia, Y., & Wang, Z. (2017). VRK1 promotes cisplatin resistance by up-regulating c-MYC via c-Jun activation and serves as a therapeutic target in esophageal squamous cell carcinoma. Oncotarget, 8(39), 65642-65658. https://doi.org/10.18632/oncotarget.20020
  19. Malathi, K., Paranjape, J. M., Ganapathi, R., & Silverman, R. H. (2004). HPC1/RNASEL Mediates Apoptosis of Prostate Cancer Cells Treated with 2_,5_-Oligoadenylates, Topoisomerase I Inhibitors, and Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand. CANCER RESEARCH, 64, 9144-9151. https://doi.org/10.1158/0008-5472.CAN-04-2226
  20. Miller, D. M., Thomas, S. D., Islam, A., Muench, D., & Sedoris, K. (2012). c-Myc and Cancer Metabolism. Clin Cancer Res., 18(20), 5546-5553. https://doi.org/10.1158/1078-0432.CCR-12-0977
  21. Mironova, N., Patutina, O., Brenner, E., Kurilshikov, A., Vlassov, V., & Zenkova, M. (2017).The systemic tumor response to RNase A treatment affects the expression of genes involved in maintaining cell malignancy. Oncotarget, 8(45), 78796-78810 https://doi.org/10.18632/oncotarget.20228
  22. Mitkevich, V. A., Tchurikov, N. A., Zelenikhin, P. V., Petrushanko, I. Y., Makarov, A. A., Ilinskaya, O. N. (2010). Binase cleaves cellular noncoding RNAs and affects coding mRNAs. FEBS J, 277(1), 186-196. https://doi.org/10.1111/j.1742-4658.2009.07471.x
  23. Nicholson, A. W. (2014). Ribonuclease III mechanisms of double-stranded RNA cleavage. WIREs RNA, 5(1), 31-48. doi: 10.1002/wrna.1195.
  24. Preynat-Seauve, O., Coudurier, S., Favier, A., Marche, P., & Villiers, C. (2003). Oxidative Stress Impairs Intracellular Events Involved in Antigen Processing and Presentation to T Cells. Cell Stress & Chaperones, 8(2), 162-171 https://doi.org/10.1379/1466-1268(2003)008<0162:OSIIEI>2.0.CO;2
  25. Rybak, S. M., Saxenat, S. K., Ackermant, E. J., & Youle, R. J. (1991). Cytotoxic Potential of Ribonuclease and Ribonuclease Hybrid Proteins. J Biol Chem, 266(31), 21202-21207 https://doi.org/10.1016/S0021-9258(18)54841-9
  26. Saxena, S. K., Sirdeshmukh, R., Ardelt, W., Mikulski, S. M., Shogen, K., Youle, R. J. (2002). Entry into cells and selective degradation of tRNAs by a cytotoxic member of the RNase A family. J Biol Chem, 277(17), 15142-15146. https://doi.org/10.1074/jbc.M108115200
  27. Wang, X., Yu, H., Sun, W., Kong, J., Zhang, L., Tang, J., Wang, J., Xu, E., Lai, M., & Zhang, H. (2018) The long non-coding RNA CYTOR drives colorectal cancer progression by interacting with NCL and Sam68. Molecular Cancer, 17(1), 110 https://doi.org/10.1186/s12943-018-0860-7
  28. Xie, H., Tang, C. H., Song, J. H., Mancuso, A., Del Valle, J. R., Cao, J., Xiang, Y., Dang, C. V., Lan, R., Sanchez, D. J., Keith, B., Hu, C. C., & Simon, M. C. (2018). IRE1a RNase-dependent lipid homeostasis promotes survival in Myc-transformed cancers. J Clin Invest, 128(4), 1300-1316. https://doi.org/10.1172/JCI95864
  29. Zhao, H., Ardelt, B., Ardelt, W., Shogen, K., Darzynkiewicz, Z. (2008). The cytotoxic ribonuclease onconase targets RNA interference (siRNA). Cell Cycle, 7(20), 3258-3261. https://doi.org/10.4161/cc.7.20.6855
  30. Zhao, L., Jha, B. K., Wu, A., Elliott, R., Ziebuhr, J., Gorbalenya, A. E., Silverman, R. H., & Weiss, S. R. (2012). Antagonism of the Interferon-Induced OAS-RNase L Pathway by Murine Coronavirus ns2 Protein Is Required for Virus Replication and Liver Pathology. Cell Host & Microbe, 11, 607-616. https://doi.org/10.1016/j.chom.2012.04.011
  31. Zhao, L., Jha, B. K., Wu, A., Elliott, R., Ziebuhr, J., Gorbalenya, A. E., Silverman, R. H., & Weiss, S.R. (2012). Antagonism of the Interferon-Induced OAS-RNase L Pathway by Murine Coronavirus ns2 Protein Is Required for Virus Replication and Liver Pathology. Cell Host Microbe, 11(6), 607-616. https://doi.org/10.1016/j.chom.2012.04.011