• Title/Summary/Keyword: biological sciences

Search Result 8,712, Processing Time 0.034 seconds

Evaluation and Weathering Depth Modeling of Thermally Altered Pelitic Rocks based on Chemical Weathering and Variations: Ulju Cheonjeon-ri Petroglyph (화학적 풍화작용과 조성변화에 따른 열변질 이질암의 풍화심도 모델링 및 평가: 울주 천전리 각석)

  • LEE Chan Hee;CHUN Yu Gun
    • Korean Journal of Heritage: History & Science
    • /
    • v.56 no.4
    • /
    • pp.160-189
    • /
    • 2023
  • The Cheonjeon-ri petroglyph is inscribed with shale formation belonging to the Daegu Formation of the Gyeongsang Supergroup in the Cretaceous of the Mesozoic Era. This rock undergoes thermal alteration to become hornfels, and has a high hardness and dense texture. Rock-forming minerals have almost the same composition as quartz, alkali felspar, plagioclase, calcite, mica, chlorite and opaque minerals, but calcite is rarely detected in the weathered zone. The petroglyph forms a weathered zone with a certain depth, and there is a difference in mineral and chemical composition between weathered and unweathered zones, respectively. The CaO contents of the weathered zone were reduced by more than 90% compared to that of the unweathered zone, because calcite reacted with water and dissolved. As a result of calculating the surface weathering depth for the petroglyph with the transmission characteristics of X-rays, depth of the parts in falling off and exfoliation showed a depth of about 0.5 to 1 mm, but the weathering depth in most areas was calculated to be about 3 to 4 mm. This can be proved by the contents and changes of Ca and Sr. The surface discolorations of the petroglyph are distributed with different color density, and the yellowish brown discoloration is alternated with a thin biofilm layer, showing a coverage of 79.6%. Therefore, periodic preservation managements and preventive conservation monitoring that can effectively control the physicochemical and biological damages of the Cheonjeonri petroglyph will be necessary.

Effect of PPARα activator and exercise on angiogenesis of white adipose tissue in high fat diet fed mice (고지방 사료를 섭취한 쥐에서 백색지방조직의 혈관신생에 대한 PPARα activator와 운동의 영향 )

  • Sun-Hyo Jeong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.40 no.5
    • /
    • pp.925-935
    • /
    • 2023
  • It was investigated whether PPARα activator more effectively inhibits angiogenesis of white adipose tissue in exercise mice that ate high fat diet compared to non-exercise mice that ate high fat diet. Male mice were randomly divided into a control group not treated with a PPARα activator fenofibrate and exercise (Con), a group treated with fenofibrate alone (FF), a group treated with exercise alone (Ex), and a group treated with a combination of fenofibrate and exercise (Ex+FF). (Ex+FF). All mice was fed high-fat diet for 8 weeks. The weight of white adipose tissue and the size of white adipocytes decreased in FF, Ex, and Ex+FF compared to Con, and decreased more in Ex+FF Ex+FF compared to FF. In white adipose tissue, the gene expression of MMPs and angiogenic factors decreased in FF, Ex, and Ex+FF compared to Con, and more decreased in Ex+FF compared to FF. On the other hand, gene expression of angiogenic inhibitors increased in FF, Ex and Ex+FF compared to Con, and increased more in Ex+FF compared to FF. Therefore, this study revealed that the combined treatment of fenofibrate and exercise effectively inhibits the angiogenesis of white adipose tissue, reducing the increase in white adipose tissue and suppressing abdominal obesity, rather than the single treatment of fenofibrate.

The TGFβ→TAK1→LATS→YAP1 Pathway Regulates the Spatiotemporal Dynamics of YAP1

  • Min-Kyu Kim;Sang-Hyun Han;Tae-Geun Park;Soo-Hyun Song;Ja-Youl Lee;You-Soub Lee;Seo-Yeong Yoo;Xin-Zi Chi;Eung-Gook Kim;Ju-Won Jang;Dae Sik Lim;Andre J. van Wijnen;Jung-Won Lee;Suk-Chul Bae
    • Molecules and Cells
    • /
    • v.46 no.10
    • /
    • pp.592-610
    • /
    • 2023
  • The Hippo kinase cascade functions as a central hub that relays input from the "outside world" of the cell and translates it into specific cellular responses by regulating the activity of Yes-associated protein 1 (YAP1). How Hippo translates input from the extracellular signals into specific intracellular responses remains unclear. Here, we show that transforming growth factor β (TGFβ)-activated TAK1 activates LATS1/2, which then phosphorylates YAP1. Phosphorylated YAP1 (p-YAP1) associates with RUNX3, but not with TEAD4, to form a TGFβ-stimulated restriction (R)-point-associated complex which activates target chromatin loci in the nucleus. Soon after, p-YAP1 is exported to the cytoplasm. Attenuation of TGFβ signaling results in re-localization of unphosphorylated YAP1 to the nucleus, where it forms a YAP1/TEAD4/SMAD3/AP1/p300 complex. The TGFβ-stimulated spatiotemporal dynamics of YAP1 are abrogated in many cancer cells. These results identify a new pathway that integrates TGFβ signals and the Hippo pathway (TGFβ→TAK1→LATS1/2→YAP1 cascade) with a novel dynamic nuclear role for p-YAP1.

Integrated analysis of transcriptome and milk metagenome in subclinical mastitic and healthy cows

  • Jinning Zhang;Xueqin Liu;Tahir Usman;Yongjie Tang;Siyuan Mi;Wenlong Li;Mengyou Yang;Ying Yu
    • Animal Bioscience
    • /
    • v.37 no.4
    • /
    • pp.709-717
    • /
    • 2024
  • Objective: Abnormally increased somatic cell counts (SCCs) in milk is usually a sign of bovine subclinical mastitis. Mutual interaction between the host and its associated microbiota plays an important role in developing such diseases. The main objective of this study was to explore the difference between cows with elevated SCCs and healthy cattle from the perspective of host-microbe interplay. Methods: A total of 31 milk samples and 23 bovine peripheral blood samples were collected from Holstein dairy cattle to conduct an integrated analysis of transcriptomic and metagenomics. Results: The results showed that Ralstonia and Sphingomonas were enriched in cows with subclinical mastitis. The relative abundance of the two bacteria was positively correlated with the expression level of bovine transcobalamin 1 and uridine phosphorylase 1 encoding gene. Moreover, functional analysis revealed a distinct alternation in some important microbial biological processes. Conclusion: These results reveal the relative abundance of Ralstonia and Sphingomonas other than common mastitis-causing pathogens varied from healthy cows to those with subclinical mastitis and might be associated with elevated SCCs. Potential association was observed between bovine milk microbiota composition and the transcriptional pattern of some genes, thus providing new insights to understand homeostasis of bovine udder.

Antioxidant, Anti-thrombosis, and Lipid Accumulation Inhibition Activities of Different Dried Vinegars (3종 분말식초의 항산화, 항혈전 및 항비만 활성)

  • Jong-Kyu Lee;Jong-Sik Kim;Ho-Yong Sohn
    • Journal of Life Science
    • /
    • v.34 no.5
    • /
    • pp.296-303
    • /
    • 2024
  • Vinegar is a fermented food product created by fermenting various sugar- and starch-containing ingredients with microorganisms. It contains a variety of organic acids, sugars, amino acids, esters, and other compounds that contribute to its unique sensory properties. Vinegar is known for its potential benefits, including aiding digestion, lowering blood sugar levels, anti-obesity effects, and antioxidant properties. It is also believed to contribute to improving alkaline body conditions. This study was conducted to develop functional dried vinegar powder from naturally fermented vinegars. Unripe apple, brown rice, and black chokeberry (aronia) were fermented using Gluconacetobacter xylinus for 90-180 days. The filtrate vinegar was spray dried with 37.46% maltodextrin, 5% glucose, 1% citric acid, and 0.04% vitamin C. Analysis of the acidity, color difference, water and soluble solid content, and heat stability of dried vinegar (DV) confirmed that spray drying is a suitable method for powder production. Moreover, the DVs exhibited excellent sensory attributes and solubility. Among the DVs, aronia-DV showed the highest 1,1-diphenyl-2-picryl hydrazyl and 2,2-azobis (3- ethylbenzothiazoline-6-sulfonate) radical scavenging activity (36.7% and 75.3%) and reducing power (0.334) at 0.5 mg/ml concentration, respectively. The nitrite scavenging activity was highest in brown unripe apple-DV, followed by aronia-DV and brown rice-DV. In the anti-thrombosis activity assay, aronia-DV showed the highest prothrombin inhibition. The brown rice-DV exhibited lipid accumulation inhibitory activity in 3T3-L1 adipocytes without cell cytotoxicity. Our results suggest the potential for commercialization of dried vinegar, highlighting its diverse benefits and applications.

Big Data Analytics in RNA-sequencing (RNA 시퀀싱 기법으로 생성된 빅데이터 분석)

  • Sung-Hun WOO;Byung Chul JUNG
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.55 no.4
    • /
    • pp.235-243
    • /
    • 2023
  • As next-generation sequencing has been developed and used widely, RNA-sequencing (RNA-seq) has rapidly emerged as the first choice of tools to validate global transcriptome profiling. With the significant advances in RNA-seq, various types of RNA-seq have evolved in conjunction with the progress in bioinformatic tools. On the other hand, it is difficult to interpret the complex data underlying the biological meaning without a general understanding of the types of RNA-seq and bioinformatic approaches. In this regard, this paper discusses the two main sections of RNA-seq. First, two major variants of RNA-seq are described and compared with the standard RNA-seq. This provides insights into which RNA-seq method is most appropriate for their research. Second, the most widely used RNA-seq data analyses are discussed: (1) exploratory data analysis and (2) pathway enrichment analysis. This paper introduces the most widely used exploratory data analysis for RNA-seq, such as principal component analysis, heatmap, and volcano plot, which can provide the overall trends in the dataset. The pathway enrichment analysis section introduces three generations of pathway enrichment analysis and how they generate enriched pathways with the RNA-seq dataset.

Synergistic effect of soy isoflavone and swimming exercise on improvement of liver function in ovariectomized mice (대두 이소플라본과 수영운동이 난소절제 쥐의 간 기능 개선에 미치는 시너지 효과)

  • Sun-Hyo Jeong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.40 no.4
    • /
    • pp.589-605
    • /
    • 2023
  • Soy isoflavones are attracting attention from postmenopausal women because of their beneficial effects on menopausal symptoms. This study was investigated whether a combination of soy isoflavone genistein and swimming exercise (Gen+SE) would have a beneficial synergistic effect on obesity and improvement of liver function compared to the genistein only (Gen) and swimming exercise only (SE) in ovariectomized mice. Ovariectomized mice were randomly divided into control group (Con), Gen, SE, and Gen+SE, and were fed a high-fat diet for 8 weeks. As a result of examining the body weight, weight of white adipose tissue, lipid accumulation of liver, and serum ALT and AST levels, both Gen and SE decreased compared to Con, and Gen+SE decreased more than compared to Gen and SE. The expression of inflammatory cytokines MCP-1, IL-6 and TNF-𝛼 genes in liver decreased in both Gen and SE compared to Con, and were further decreased in Gen+SE compared to Gen and SE. But The expression of adiponectin showed opposite results. The expression of fatty acid oxidation related genes in liver increased in both Gen and SE compared to Con, and were more effectively than increased in Gen+SE compared to Gen and SE. Therefore this study suggests that the interaction between soy isoflavone and swimming exercise is very effective controlling obesity and recovering decreased liver function, and this is caused by promoting fatty acid oxidation in the liver in ovariectomized mice.

Integration and Reanalysis of Four RNA-Seq Datasets Including BALF, Nasopharyngeal Swabs, Lung Biopsy, and Mouse Models Reveals Common Immune Features of COVID-19

  • Rudi Alberts;Sze Chun Chan;Qian-Fang Meng;Shan He;Lang Rao;Xindong Liu;Yongliang Zhang
    • IMMUNE NETWORK
    • /
    • v.22 no.3
    • /
    • pp.22.1-22.25
    • /
    • 2022
  • Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndromecoronavirus-2 (SARS-CoV-2), has spread over the world causing a pandemic which is still ongoing since its emergence in late 2019. A great amount of effort has been devoted to understanding the pathogenesis of COVID-19 with the hope of developing better therapeutic strategies. Transcriptome analysis using technologies such as RNA sequencing became a commonly used approach in study of host immune responses to SARS-CoV-2. Although substantial amount of information can be gathered from transcriptome analysis, different analysis tools used in these studies may lead to conclusions that differ dramatically from each other. Here, we re-analyzed four RNA-sequencing datasets of COVID-19 samples including human bronchoalveolar lavage fluid, nasopharyngeal swabs, lung biopsy and hACE2 transgenic mice using the same standardized method. The results showed that common features of COVID-19 include upregulation of chemokines including CCL2, CXCL1, and CXCL10, inflammatory cytokine IL-1β and alarmin S100A8/S100A9, which are associated with dysregulated innate immunity marked by abundant neutrophil and mast cell accumulation. Downregulation of chemokine receptor genes that are associated with impaired adaptive immunity such as lymphopenia is another common feather of COVID-19 observed. In addition, a few interferon-stimulated genes but no type I IFN genes were identified to be enriched in COVID-19 samples compared to their respective control in these datasets. These features are in line with results from single-cell RNA sequencing studies in the field. Therefore, our re-analysis of the RNA-seq datasets revealed common features of dysregulated immune responses to SARS-CoV-2 and shed light to the pathogenesis of COVID-19.

The Progression of SARS Coronavirus 2 (SARS-CoV2): Mutation in the Receptor Binding Domain of Spike Gene

  • Sinae Kim;Jong Ho Lee;Siyoung Lee;Saerok Shim;Tam T. Nguyen;Jihyeong Hwang;Heijun Kim;Yeo-Ok Choi;Jaewoo Hong;Suyoung Bae;Hyunjhung Jhun;Hokee Yum;Youngmin Lee;Edward D. Chan;Liping Yu;Tania Azam;Yong-Dae Kim;Su Cheong Yeom;Kwang Ha Yoo;Lin-Woo Kang;Kyeong-Cheol Shin;Soohyun Kim
    • IMMUNE NETWORK
    • /
    • v.20 no.5
    • /
    • pp.41.1-41.11
    • /
    • 2020
  • Severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) is a positive-sense single-stranded RNA (+ssRNA) that causes coronavirus disease 2019 (COVID-19). The viral genome encodes twelve genes for viral replication and infection. The third open reading frame is the spike (S) gene that encodes for the spike glycoprotein interacting with specific cell surface receptor - angiotensin converting enzyme 2 (ACE2) - on the host cell membrane. Most recent studies identified a single point mutation in S gene. A single point mutation in S gene leading to an amino acid substitution at codon 614 from an aspartic acid 614 into glycine (D614G) resulted in greater infectivity compared to the wild type SARS-CoV2. We were interested in investigating the mutation region of S gene of SARS-CoV2 from Korean COVID-19 patients. New mutation sites were found in the critical receptor binding domain (RBD) of S gene, which is adjacent to the aforementioned D614G mutation residue. This specific sequence data demonstrated the active progression of SARS-CoV2 by mutations in the RBD of S gene. The sequence information of new mutations is critical to the development of recombinant SARS-CoV2 spike antigens, which may be required to improve and advance the strategy against a wide range of possible SARS-CoV2 mutations.

The impact of the legal designation and collection system on the abandonment and surrender of non-native common snapping turtle(Chelydra serpentina) in South Korea (법정관리종 지정 및 수거 제도가 외래종 늑대거북 유기에 미치는 영향)

  • Eun Jin Park;Hakyung Kang;Chul Hoon Kim;Jong-Yoon Im;Yikweon Jang;Kyo Soung Koo
    • Korean Journal of Environmental Biology
    • /
    • v.42 no.1
    • /
    • pp.46-53
    • /
    • 2024
  • The common snapping turtle (Chelydra serpentina), which is native to North America, started to be imported into South Korea as pets in the 1990s. The turtle was sold in supermarkets and pet shops nationwide at low prices such as 20 USD. These non-native turtles, with their large size and strong predatory nature, have been consistently discovered in the wild in South Korea beginning in 2014, and they were designated as an ecosystem-disturbing species (EDS) in October 2022. Until June 30, 2023, a collection system was implemented to reduce the abandonment problem of C. serpentina due to their designation as an EDS. In this study, we analyzed the impacts of the legal designation as an ecologically disturbing species and the collection system of C. serpentina on their abandonment and surrender. Our findings showed that designation as EDS did not affect the abandonment of C. serpentina. Meanwhile, the collection system led to cases of immediate surrender. Within 3 years of post-purchase, 41.8% of the turtles were surrendered, and 67.5% were surrendered when they reached 3kg. Determining the impact of the legal designation as an EDS may be currently limited due to the difficulty of detecting C. serpentina in the wild. On the other hand, cases of surrender through the collection system are considered to be effective as they have been shown to reduce the abandonment of this newly designated ecosystem-disturbing species.