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As next-generation sequencing has been developed and used widely, RNA-sequencing (RNA-seq) 
has rapidly emerged as the first choice of tools to validate global transcriptome profiling. With the 
significant advances in RNA-seq, various types of RNA-seq have evolved in conjunction with the 
progress in bioinformatic tools. On the other hand, it is difficult to interpret the complex data 
underlying the biological meaning without a general understanding of the types of RNA-seq and 
bioinformatic approaches. In this regard, this paper discusses the two main sections of RNA-seq. 
First, two major variants of RNA-seq are described and compared with the standard RNA-seq. This 
provides insights into which RNA-seq method is most appropriate for their research. Second, the 
most widely used RNA-seq data analyses are discussed: (1) exploratory data analysis and (2) 
pathway enrichment analysis. This paper introduces the most widely used exploratory data analysis 
for RNA-seq, such as principal component analysis, heatmap, and volcano plot, which can provide 
the overall trends in the dataset. The pathway enrichment analysis section introduces three 
generations of pathway enrichment analysis and how they generate enriched pathways with the 
RNA-seq dataset.

Copyright Ⓒ 2023 The Korean Society for Clinical Laboratory Science.
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INTRODUCTION

Investigating the transcriptomic differences between 

physiological and pathological conditions helps us gain 

insights into the mechanisms underlying diseases and 

the development of therapeutic strategies. The traditional 

approach relied on low-throughput techniques such as 

reverse transcription polymerase chain reaction and 

quantitative polymerase chain reaction, which are 

limited to analyzing single or a few transcripts of interest 

[1]. However, alteration of particular gene expression 

may not always directly lead to the phenotype of 

interest, but expression change of multiple gene sets 

can be involved in the consequential biological pheno-

types [2]. With rapid technological advancements, 

researchers are able to analyze global transcriptome 

profiling. The first transcriptome study was conducted 

using complementary DNA microarray to monitor the 

expression of 45 Arabidopsis genes with a single 

reaction [3]. This study has opened new avenues for 

investigating transcriptomes on a genome-wide scale, 

going beyond single-gene analysis. Although current 

DNA microarrays can offer comprehensive coverage of 

the genome, this technique is limited to pre-defined 
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Table 1. Comparison of distinct RNA-seq described in this review

Standard RNA-seq 3’ Tag RNA-seq De novo transcript assembly

Purpose Discovery of DEGs
Splice variant analysis
SNP discovery

Discovery of DEGs Working with unavailable model organism 
and/or high amount of genomic 
alteration sample

Applicable species Prokaryote, eukaryote Eukaryote Prokaryote, eukaryote

Recommended read depth 10~30 million reads ＜5 million reads 100~200 million reads

Cost Average Low High

Recommended input RNA (ng) ＞500 ＞25 ＞500

Recommended RIN ＞8.0 ＞5.0 ＞5.3 (10.1111/1755-0998.12485)

Reference genome Required Required Not required

Abbreviations: RNA-seq, RNA-sequencing; DEGs, differentially expressed genes; SNP, single nucleotide polymorphism; RIN, RNA integrity
number.

transcripts due to the requirement of hybridization 

with pre-fixed probes on the DNA chip. In addition, the 

other disadvantages of microarrays are relatively (1) 

high cost, (2) low specificity, and (3) low reprodu-

cibility. After next-generation sequencing (NGS) became 

available, RNA-sequencing (RNA-seq) has been gradually 

overtaking DNA microarray as the tool of choice for 

studying global transcriptome to overcome the disadvan-

tages of microarray [4]. In contrast to hybridization- 

based microarrays, RNA-seq does not require prede-

signed probes and provides more sensitive and accurate 

data at a lower cost [5]. However, RNA-seq presents 

numerous challenges that need to be overcome for 

accurate data interpretation. Our goals in this review 

are to describe distinct RNA-Seq to select the most 

appropriate assay and how to interpret the RNA-Seq 

data to gain insights into relevant biological meaning.

MAIN ISSUE

1. Types of RNA-sequencing 

RNA-seq is one of the most popular high-throughput 

technologies that uses NGS to reveal patterns and quantify 

cellular transcriptomes. Since the development of RNA- 

seq, nearly 100 distinct methods have evolved from the 

standard RNA-seq protocol [6]. Nevertheless, the majority 

of RNA-seq data in public repositories have been gene-

rated using Illumina sequencing technology, and most 

of the steps have not changed substantially [6]. Therefore, 

this review focuses on the pros and cons of each 

RNA-seq methods between standard RNA-seq and 

other two popular variants of RNA-seq, rather than 

describing the detailed workflows of each RNA-seq.

1) Standard RNA-sequencing 

The standard RNA-seq procedure consists of several 

steps including RNA isolation, converting to comple-

mentary DNA (cDNA), adaptor ligation, constructing a 

sequencing library, sequencing by synthesis, and analysis. 

Standard RNA-seq provides transcriptome information 

on gene expression profiling, splice variant analysis and 

single nucleotide polymorphism (SNP) discovery (Table 

1) [7]. However, standard RNA-seq requires a relatively 

higher amount of RNA and a higher RNA integrity 

number (RIN), which can be a significant obstacle for 

analyzing less abundant cell populations in tissue and 

low-quality RNA from forensic and certain clinical 

samples [8, 9].

2) 3’ Tag RNA-sequencing

One popular variation of RNA-seq is 3’ Tag RNA-seq, 

which uses oligo-dT priming for cDNA conversion, 

resulting in constructed libraries that are enriched near 

the 3’ end of polyadenylated messenger RNAs (mRNAs) 

[10]. Because the 3’ end of mRNA in mammals is more 

stable than other mRNA regions, 3’ Tag RNA-seq is less 

sensitive to RNA degradation [11]. In addition, 3’ Tag 

RNA-seq requires much fewer sequencing reads to 

identify differentially expressed genes (DEGs) between 

the samples, leading to substantial cost savings as well 
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Table 2. Most widely studied species of latest reference genome assembly available in the UCSC Browser (http://genome.ucsc.edu.)

Taxonomic name UCSC version Genome assembly name Release date

Homo sapiens hs1 T2T CHM13v2.0 24 Jan. 2022

Mus musculus mm39 GRCm39 Jun. 2020

Rattus norvegicus rn7 mRatBN7.2 Nov. 2020

Danio rerio danRer11 GRCz11 May 2017

Drosophila melanogaster dm6 BDGP Release 6+ISO1 MT Aug. 2014

Caenorhabditis elegans ce11 WBcel235 Feb. 2013

Saccharomyces cerevisiae S288C sacCer3 R64 Apr. 2011

Abbreviation: UCSC, University of California Santa Cruz. 

as providing low-noise gene expression profiles. 

However, 3’ Tag RNA-seq does have certain limitations. 

For instance, it is only suitable for eukaryotic total RNA 

samples due to the requirement of a poly-A tail. In 

addition, it is not suitable for identifying splice variant 

analysis and SNP discovery. Therefore, 3’ Tag RNA-seq 

can be the best sequencing option in case the primary 

goal of the analysis is to identify DEGs between 

eukaryotic samples that have a lower quantity and 

lower RIN.

3) De Novo Transcript Assembly

The resulting sequenced reads generated from both 

standard RNA-seq and 3’ Tag RNA-seq are required 

reference genomes for mapping and assembling them 

to reveal the transcript (Table 2). In contrast, de novo 

transcript assembly involves the process of directly 

joining overlapping reads into longer contiguous se-

quences and don’t need reference genome for analysis. 

Therefore, de novo transcript assembly becomes a 

useful approach for analyzing cellular transcriptomes 

with an unavailable reference genome sequence. 

Moreover, de novo transcript assembly successfully 

generates transcripts even in cases where a reference- 

guided assembly may fail to reconstruct them correctly 

due to gaps, high fragmentation, or significant alter-

ations in the genomic sequence, as is often the case in 

cancer cells [12]. Nonetheless, it is essential to ack-

nowledge certain limitations associated with de novo 

transcript assembly. de novo transcript assembly 

requires a high amount of sequencing read counts, 

which causes a much higher cost. Moreover, most 

genomes contain lots of repetitive regions, which make 

it difficult to achieve high-quality transcript assembly 

and often cause errors leading to misarrangements in 

the assembly results [13]. 

In summary, in order to select a suitable RNA-seq 

method, several factors should be considered such as 

experimental objectives, RNA sample quality and 

availability of a reference transcriptome.

2. RNA-sequencing Data Analysis

1) Exploratory Data Analysis

Exploratory data analysis refers to the approach of 

investigating and summarizing the main characteristics 

of the data sets to facilitate a better understanding of 

the data [14]. Several statistical data visualization 

methods, such as principal component analysis (PCA), 

heatmap, and volcano plot, are categorized under 

exploratory data analysis. With these analyses, we can 

quickly reveal the overall trends in the dataset, which 

can guide us in determining the most suitable analytical 

approach.

(1) Principal Component Analysis (PCA)

Since RNA-seq is involved in complex multiple steps, 

extreme deviation of intrasample called an outlier is 

often generated [15, 16]. Finding and removing outliers 

in RNA-seq datasets is a prerequisite for improving 

quality and preventing misinterpretation of the 

biological meaning derived from RNA-seq data. Given 

that data generated from RNA-seq is high-dimensional, 

considering a global overview of the data is necessary to 

determine intrasample outliers. In this regard, PCA is 



238   Sung-Hun WOO and Byung Chul JUNG. RNA-sequencing Analysis  

www.kjcls.org

Figure 1. Comparing PCA plot of simu-
lated dataset with or without outlier. 
PC1 (A or X%) and PC2 (B or Y%) des-
cribes the most and second most vari-
ation within the data, which accounts 
for (A or X%) or (B or Y%) of the variance 
respectively (A＞B; X＞Y).
Abbreviations: PCA, principal component 
analysis; PC1, principal component1; 
PC2, principal component2.

Figure 2. Comparison of heatmap generated from the same simulated dataset without hierarchical clustering algorithm (A) and with hierarchical 
clustering algorithm (B). Heatmaps are generated by ComplexHeatmap R package [21, 23].

the most widely used way to distinguish outliers. PCA is 

a widely used exploratory data analysis to reduce the 

dimensionality of the dataset, which can allow for 

visualization of the dominant patterns of the data [17]. 

Principal components are linear combinations of the 

genes that collectively explain the variation across the 

samples [18]. As depicted in Figure 1, the PCA plot 

provides the overall similarity of the dataset. Through 

the PCA plot in Figure 1 (right), we can successfully 

identify an outlier that deviates significantly from the 

overall distribution pattern of the control group.

(2) Heatmap

Heatmap is a graphical representation of the data 

using a color gradient for easier interpretation and 

visualization of RNA-seq data [19]. Genes with higher 

expression levels are typically colored red, while those 

with lower expression levels are colored blue, thus 

providing a simultaneous illustration of gene expression 

patterns within large datasets across all the samples. In 

most cases, rows representing each gene and columns 

representing each sample are reordered by certain 

clustering algorithms. This reordering ensures the data 

matrices with similar patterns are placed closely on the 

heatmap. In biology, a hierarchical clustering algorithm 

is the most widely applied algorithm for generating a 

heatmap [20, 21]. The hierarchical clustering algorithm 

is a type of unsupervised machine learning algorithm, 

which pairs objects based on the degree of similarity 

[22]. Therefore, a heatmap combined with a hierarchi-

cal clustering algorithm provides better visualization of 

patterns, relationships, and similarities across all the 

samples (Figure 2) [21, 23]. In ideal RNA-seq data, hiera-

rchical clustering algorithms would pair the same groups 
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Table 3. Popular public repositories commonly used in pathway enrichment analysis

Database Website TPA availability Reference (DOI)

KEGG https://www.kegg.jp/ Yes 10.1093/nar/28.1.27

GO https://geneontology.org/ No 10.1002/pro.4218

REACTOME https://reactome.org/ Yes 10.1093/nar/gkab1028

WikiPathways https://www.wikipathways.org/ Yes 10.1093/nar/gkaa1024

MsigDB https://www.gsea-msigdb.org/gsea/msigdb No 10.1016/j.cels.2015.12.004

Figure 3. Typical volcano plot generated from the simulated dataset. 
Bioinfokit python package was used to illustrate the volcano plot [26].
Abbreviation: FC, fold change.

together, as the similarity within the same groups is 

greater than the similarity between different groups.

(3) Volcano Plot

A volcano plot is a type of scatter plot to explore the 

most interesting genes within large datasets. Typically, 

the x-axis of a volcano plot represents log2 of the fold 

change (FC), and the y-axis represents the –log10 of the 

adjusted P-value, which is called as “double filtering” 

criterion [24, 25]. As depicted in Figure 3 [26], interesting 

genes (DEGs) meet the two criteria: (1) |log2FC|＞1 and 

(2) adjusted P-value＜0.05. Double filtering criteria can 

be beneficial to exclude (1) genes with large expression 

differences that are caused by large variations in the 

dataset (outlier) and (2) genes that show statistical 

significance but have low expression differences, which 

could be false positives caused by batch effect or low 

expression level [24, 27]. In a volcano plot, the points 

representing each gene that is located in the upper- 

right and upper-left corners are considered the most 

promising findings, which can be candidate biomarkers 

and therapeutic targets. However, double filtering 

criteria itself relies on arbitrary cutoffs and there is no 

standard rule for setting up a cutoff threshold, which 

results in filtering out potentially valuable genes that 

are close to the cutoff threshold. 

Therefore, researchers should be aware that while 

exploratory data analysis is useful for an initial over-

view, it does not provide sufficient information to 

derive meaningful conclusions.

2) Pathway Enrichment Analysis

With the advent of high-throughput technologies 

such as RNA-seq, the main hurdle has shifted from 

acquiring gene expression profiles to the correct 

interpretation of the transcriptomic data to gain insights 

into relevant biological meaning. Typically, RNA-seq 

data generates the gene list of hundreds to thousands of 

DEGs, making it nearly impossible to manually search 

the literature and interpret the biological nuances. A 

standard strategy to overcome this issue is a pathway 

enrichment analysis which identifies a smaller list of 

interpretable biological pathways from overwhelmingly 

large gene lists [28]. Biological pathways are achieved 

with statistical testing whether provided gene lists are 

enriched in particular pathways from a variety of 

databases (Table 3). Pathway enrichment analysis can 

be categorized into over representation analysis (ORA), 

functional class scoring (FCS), and topology-based 

pathway analysis (TPA) (Figure 4) [29, 30].

(1) Over Representation Analysis

ORA is the first generation of pathway enrichment 

analysis that explores the list of DEGs that are enriched 

in certain biological pathways from public repositories 
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Figure 4. Schematic image of pathway enrichment analysis.
Abbreviations: ORA, over representation analysis; FCS, functional class scoring; TPA, topology-based pathway analysis; RNA-seq, 
RNA-sequencing; DEGs, differentially expressed genes.

(Table 3). The first step of ORA is identifying DEGs from 

RNA-seq data using certain criteria such as false 

discovery rate (FDR) and/or FC of gene expression. The 

next step involves counting the number of selected 

DEGs within each pathway. This counting process is 

performed for each pathway individually. Subsequently, 

the statistical evaluation of each pathway is carried out 

using a Fisher’s exact test based on the hypergeometric 

distribution [28, 31]. Since hundreds of pathways 

(hypothesis) are statistically evaluated simultaneously, 

each statistical evaluation has a false positive error 

probability (Type I error) [32, 33]. Therefore, multiple- 

testing correction is required to correct this error. 

Benjamini-Hochberg FDR procedure is the most 

commonly applied method to correct P-value as the 

adjusted P-value (Q-value) [34]. However, there are still 

limitations to ORA. Since the selection of DEGs relies 

on arbitrary cutoffs, such as FDR and/or FC of gene 

expression, standardization can be challenging. Addi-

tionally, ORA is that it tends to identify DEGs associated 

with substantial expression changes by arbitrary 

cutoffs. This tendency can exclude sets of functionally 

related genes with milder expression changes, which 

could coordinately exert as much influence as a single 

gene with a large expression change. Moreover, once 

DEGs are chosen, ORA considers the entire list of genes 

for analysis. This approach results in each gene within 

the DEGs list having an equal impact on pathway 

enrichment, regardless of differences in their FDR and 

gene expression levels.

(2) Functional Class Scoring

FCS is the second generation of pathway enrichment 

analysis to overcome the limitations of ORA. In contrast 

to ORA, FCS does not filter out with a particular 

threshold to isolate the list of DEGs. Instead, FCS 

calculates and assigns the gene score to each gene and 

analyzes pathway enrichment based on these assigned 

gene scores, ensuring that all genes are considered in 

the analysis. The most widely used FCS tool is gene set 

enrichment analysis (GSEA) [2, 35]. GSEA computes 

gene scores with several methods such as signal-to- 
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noise ratio, t-test and gene expression between two 

phenotypes [36]. Then, it evaluates the distribution of a 

set of genes from each pathway of the database repo-

sitory to assign an enrichment score through a weighted 

Kolmogorov-Smirnov-like statistic [2]. The statistical 

significance of the enrichment score is evaluated by an 

empirical phenotype-based permutation test for larger 

replicates or a gene set for smaller replicates (below 7 

replicates) [36]. Lastly, the enrichment score is adjusted 

by multiple hypotheses testing to reduce a false positive 

finding. Since the FCS method uses all available infor-

mation from RNA-seq data, it has a better resolution to 

detect the pathways associated with weak but 

coordinated gene sets. However, FCS also comes with 

certain limitations. FCS does not account for the 

relationships within the gene sets of the pathway, often 

referred to as the ‘gene independence assumption’ [37], 

which is far removed from the interconnected nature of 

biology. Similarly, another limitation of FCS is that it 

does not consider the interplay between pathways. 

Given that biological pathways are not isolated entities, 

and one pathway can affect the activity of others, the 

approach of FCS neglects actual biological processes.

(3) Topology-based Pathway Analysis

To overcome the limitations of ORA and FCS, TPA 

was developed. Unlike the first two-generation analysis, 

TPA takes into consideration not only the lists of genes 

and gene ranks but also the integration of topological 

information from particular biological pathway reposi-

tories such as KEGG, REACTOME, or WikiPathway [38]. 

There are several publicly available TPA based packages 

such as SPIA and SEMgsa [39, 40]. The algorithm of TPA 

is fundamentally similar to that of FCS. However, the 

main difference lies in the fact that TPA considers 

topological features of the genes such as the position of 

genes within a pathway and its interaction with other 

genes [41]. Essentially, TPA computes a pathway-level 

perturbation using both expression and the topology of 

the pathway, which enables a better assessment of 

relevant pathway derived from the RNA-seq data 

[42-44]. Although TPA is the latest generation, this 

method also has its own limitations, which may be 

addressed in future methods. First, it is not feasible to 

consider activation and inactivation time and spatial 

distribution for the pathway components in the model. 

Second, the genuine pathway underlying the RNA-seq 

data can be different from the pathways of the 

database. Lastly, the limited database is available due to 

the cell and tissue specificity of the pathway.

CONCLUSION

As technology advances, RNA-seq has become the 

first choice for interpreting cellular transcriptomes 

both in research and clinical applications. To provide 

general considerations for choosing appropriate types 

of RNA-seq, we introduce 3’ Tag RNA-seq and de novo 

transcript assembly as well as standard RNA-seq in this 

review (Table 1). For example, if the primary objectives 

of the experiment are to isolate DEGs from a small 

amount or low-quality eukaryotic RNA samples, then 3’ 

Tag RNA-seq would be a better option compared to 

standard RNA-seq. Moreover, we also summarize three 

generations of pathway enrichment analysis, which has 

become one of the foremost tools of RNA-seq data. 

Basically, all the pathway enrichment analyses aim to 

simplify the complex transcriptomic profiling, identi-

fying a smaller number of significantly enriched path-

ways. As described above, all three have their own 

advantages and limitations. It is important for 

researchers to understand that none of the existing 

approaches is flawless. Therefore, these tools should be 

used to generate more refined hypotheses for uncovering 

biological meanings, rather than making definitive 

conclusions.

요  약

차세대 염기서열 분석이 개발되고 널리 사용됨에 따라 RNA-

시퀀싱(RNA-sequencing, RNA-seq)이 글로벌 전사체 프로

파일링을 검증하기 위한 도구의 첫번째 선택으로 급부상하게 되
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었다. RNA-seq의 상당한 발전으로 다양한 유형의 RNA-seq

가 생물정보학(bioinformatics) 발전과 함께 진화했으나, 다양

한 RNA-seq 기법 및 생물정보학에 대한 전반적인 이해 없이는 

RNA-seq의 복잡한 데이터를 해석하여 생물학적 의미를 도출

하기는 어렵다. 이와 관련하여 본 리뷰에서는 RNA-seq의 두 가

지 주요 섹션을 논의하고 있다. 첫째, Standard RNA-seq과 주

요하게 자주 사용되는 두 가지 RNA-seq variant method를 

비교하였다. 이 비교는 어떤 RNA-seq 방법이 연구 목적에 가장 

적절한지에 대한 시사점을 제공한다. 둘째, 가장 널리 사용되는 

RNA-seq에서 생성된 데이터 분석; (1) 탐색적 자료 분석 및 (2) 

enriched pathway 분석에 대해 논의하였다. 데이터 세트의 

전반적인 추세를 제공할 수 있는 주 성분 분석, Heatmap 및 

Volcano plot과 같이 RNA-seq에 대해 가장 널리 사용되는 탐

색적 자료 분석을 소개하였다. Enriched pathway 분석 섹션

에서는 3가지 세대의 enriched pathway 분석에 대해 소개하

고 각 세대가 어떤 식으로 RNA-seq 데이터 세트로부터 

enriched pathway를 도출하는지를 소개하였다.
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