• Title/Summary/Keyword: biological oxidation

Search Result 601, Processing Time 0.026 seconds

Antimicrobial, Antioxidant, and Anticoagulation Activities of Salicornia europaea seeds (함초 씨의 항균, 항산화 및 항혈전 활성)

  • Kim, Mi-Sun;Kim, Deuk Hoi;Sohn, Ho-Yong
    • Microbiology and Biotechnology Letters
    • /
    • v.44 no.4
    • /
    • pp.452-460
    • /
    • 2016
  • This study was designed to develop a functional pharma-food using Salicornia europaea (SE). Tiny seeds from the mature SE were collected, and their biological activities were evaluated. The extraction yield of the seed in hot water was found to be 29.6% and the hot water extract (HWE) contained 25.7 mg/g total polyphenol (TP) and 11.5 mg/g total flavonoid (TF), which are similar to those contained in leaf and stem of SE. Among the subsequent organic solvent fractions, the ethylacetate (EA) fraction exhibited the highest content of TP (158.3 mg/g), TF (136.2 mg/g), and total sugar (228.3 mg/g). The EA fraction exhibited broad-range antibacterial activities against gram-positive bacteria, and the butanol fraction exhibited growth inhibitory effect against only Staphylococcus epidermidis. An antioxidation activity assay of the HWE and its fractions showed the EA fraction to have the highest radical scavenging activity with $RC_{50}$ values of 57.0, 29.0, and $28.9{\mu}g/ml$ against DPPH anion, ABTS cation, and nitrite, respectively. The $RC_{50}$ values of vitamin C against DPPH anion, ABTS cation, and nitrite were 10.7, 4.0, and $18.0{\mu}g/ml$, respectively, indicating that the EA fraction of SE has potent antioxidant compounds. In an anticoagulation assay, the EA fraction exhibited a 15-fold extended thrombin time at 5 mg/ml and activated partial thromboplastin time at 7 mg/ml, which are comparable to the activities of aspirin. The HWE and its fractions had no hemolysis activities against human RBCs at up to 1 mg/ml. These results suggest that the EA fraction from SE has a great potential as a new antibacterial and anticoagulation agent.

Comparative Assessment of Specific Genes of Bacteria and Enzyme over Water Quality Parameters by Quantitative PCR in Uncontrolled Landfill (정량 PCR을 이용한 비위생 매립지의 특정 세균 및 효소 유전자와 수질인자와의 상관관계 평가)

  • Han, Ji-Sun;Sung, Eun-Hae;Park, Hun-Ju;Kim, Chang-Gyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.8
    • /
    • pp.895-903
    • /
    • 2007
  • As for the increasing demanding on the development of direct-ecological landfill monitoring methods, it is needed for critically defining the condition of landfills and their influence on the environment, quantifying the amount of enzymes and bacteria mainly concerned with biochemical reaction in the landfills. This study was thus conducted to understand the fates of contaminants in association with groundwater quality parameters. For the study, groundwater was seasonally sampled from four closed unsanitary landfills(i.e. Cheonan(C), Wonju(W), Nonsan(N), Pyeongtaek(P) sites) in which microbial diversity was simultaneously obtained by 16S rDNA methods. Subsequently, a number of primer sets were prepared for quantifying the specific gene of representative bacteria and the gene of encoding enzymes dominantly found in the landfills. The relationship between water quality parameters and gene quantification were compared based on correlation factors. Correlation between DSR(Sulfate reduction bacteria) gene and BOD(Biochemical Oxygen Demand) was greater than 0.8 while NSR(Nitrification bacteria-Nitrospira sp.) gene and nitrate were related more than 0.9. A stabilization indicator(BOD/COD) and MTOT(Methane Oxidation bacteria), MCR(Methyl coenzyme M reductase), Dde(Dechloromonas denitrificans) genes were correlated over 0.8, but ferric iron and Fli(Ferribacterium limineticm) gene were at the lowest of 0.7. For MTOT, it was at the highest related at 100% over BOD/COD. In addition, anaerobic genes(i.e., nirS-Nitrite reductase, MCR. Dde, DSR) and DO were also related more than 0.8, which showing anaerobic reactions generally dependant upon DO. As demonstrated in the study, molecular biological investigation and water quality parameters are highly co-linked, so that quantitative real-time PCR could be cooperatively used for assessing landfill stabilization in association with the conventional monitoring parameters.

Absorbance as Simple Indicator for Polyphenol Content and Antioxidant Activity of Honey (벌꿀 폴리페놀 함량 및 항산화 활성의 간단지표로서의 400 nm 흡광도)

  • Pyo, Su-Jin;Kim, Jong-Sik;Lee, Dong Hee;Sohn, Ho-Yong
    • Journal of Life Science
    • /
    • v.30 no.6
    • /
    • pp.555-562
    • /
    • 2020
  • This study analyzed the total polyphenol (TP), total flavonoid (TF), and protein content, the Absorbance at 400 nm (A400), and the antioxidant and hemolytic activities of 150 Korean honey products, including 41 chestnut (CH), 42 acacia (AH), 62 multi-floral (MH), and five Styrax japonica (TH) varieties. Our results showed that the components and antioxidant activities of honey are dependent on botanical origin rather than farming area or farmer. CH showed the highest levels of TP (88.6±29.8 mg/100 g) and TF (1.20±0.82 mg/100 g), whereas TH had the highest protein (21.5±5.1 mg/100 g). A400 was the highest in CH (0.161±0.044). All of the honey products exhibited negligible hemolytic activity against human red blood cells up to 1 mg/ml. Potent radical scavenging activities for 1,1-diphenyl-2-picryl hydrazyl (DPPH), 2,2-azobis(3-ethylbenzothiazoline-6- sulfonate) (ABTS), nitrite and reducing power were also observed in CH. Correlation coefficients (CCs) between analysis parameters were calculated and the highest was identified between TP and ABTS scavenging activity (0.726). The CCs between A400 and TP and A400 and ABTS scavenging activity were 0.644 and 0.661, respectively, suggesting that A400 could be used as a quality indicator for the polyphenol content and antioxidant activity of particular honeys. Future research on polyphenol by flower origin and the identification of compounds for A400 is necessary.

Chemical Components and Biological Activity of Stauntonia hexaphylla (멀꿀의 화학성분과 생리활성)

  • Park, Yun-Jum;Park, Yong-Seo;Towantakavanit, Korsak;Park, Jae-Ok;Kim, Young-Min;Jung, Kyoo-Jin;Cho, Ja-Yong;Lee, Kyung-Dong;Heo, Buk-Gu
    • Korean Journal of Plant Resources
    • /
    • v.22 no.5
    • /
    • pp.403-411
    • /
    • 2009
  • This study was conducted to gather the basic data on the increase of utilization for the Japanese staunton vine (Stauntonia hexaphylla), native plants which were grown in the southern districts in Korea. We have also determined their partial physical and chemical compositions and their physiological activities. Vitamin C contents in fruit skin was 85.23 mg/100 g, and that in flesh was 61.67 mg/100 g. Total amino acids contents in fruit skin increased much more by 762.72 mg/100 g DW compared to that in flesh by 434.05 mg/100 g DW. Inorganic matter contents were more increased in the fruit skin (108.48 mg/$\ell$) and its main components were K (76.53 mg/$\ell$), Ca (20.20 mg/$\ell$) and Mg (6.22 mg/$\ell$). Total phenol compound and flavonoid contents in 1,000 mg/$\ell$ methanol extracts were 7.3-9.6 mg/$\ell$ and 5.1-6.7 mg/$\ell$. Nitrite radical scavenging activity in 4,000 mg/$\ell$ methanol extracts of fruit skin and flesh for Stauntonia hexaphylla were 79.5% and 77.8%, however, that in seeds was 17.1%. Overall mushroom tyrosinase inhibition activity (% of control) was less than 10.8%. Anti-microbial activities of methanol extracts from the fruit skin against the gram negative and positive microbial strains were not significant in the lower concentration of extracting solution, however, that from flesh and seeds in terms of the inhibition diameter were $8.91{\sim}12.25\;mm$.

Anti-aging Effects of L-Carnitine on Human Skin (L-카르니틴의 사람피부에 대한 항노화 효과)

  • Lee Bum-Chun;Choe Tae-Boo;Sim Gwan-Sub;Lee Geun-Soo;Park Sung-Min;Lee Chun-Il;Pyo Hyeong-Bae
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.3 s.47
    • /
    • pp.393-397
    • /
    • 2004
  • L-Carnitine $({\beta}-hydroxy-{\gamma}-trimethyl-ammoniumbutyric{\;}acid)$ is a small water-soluble molecule important in mammalian fat metabolism. It is essential for the normal oxidation of fatty acids by the mitochondria, and is involved in the trans-esterification and excretion of acyl-CoA esters. In this paper, to investigate the relationship between aging and L-carnitine, we investigated the effects of in vitro matrix-metalloproteinase (MMP) inhibition and activity and expression of UYA-induced MMPs in human skin fibroblasts. Also, we studied to develop as anti-aging cosmetics with L-carnitine. Fluorometric assays of the proteolytic activities of MMP-1 (collagenase) were performed using fluorescent collagen substrates. ELISA (enzyme linked immune sorbent assay), gelatin-substrate zymography, RT-PCR ELISA techniques were used for the effects of L-carnitine on MMP expression, activity, and MMP mRNA expression in UVA irradiated fibroblast $(5\;J/cm^2)$, respectively. In addition, we performed clinical study with L-carnitine cream. L-carnitine inhibited the activities of MMP-1 in a dose-dependent manner and the $IC_{50}$ values calculated from semi-log plots were 2.45 mM, and L-carnitine showed strong inhibition on MMP-2 (gelatinase) activity in UVA irradiated fibroblast by zymography. Also, UVA induced MMP-1, 2 expression was reduced $43\%,\;53\%$ by treated with L-carnitine at 1.25 mM, and MMP-1 mRNA expression was reduced dose-dependent manner. Therefore L-carnitine was able to significantly inhibit the MMP activity, and regulate MMP expression in protein and mRNA level. The results of clinical study showed that $1.0\%$ L-carnitine treated group reduced wrinkle significantly compared with placebo treated group (P<0.05). All these results suggest that L-carnitine may be useful as new anti-aging cosmetics for protection against UVA induced Mm expression and activity.

Characteristics of Seepage Water and Groundwater in a Coastal LPG Storage Cavern of Jeonnam (전남 해안 LPG 저장공동 유출수와 주변 지하수의 수질특성)

  • Lee, Jin-Yong;Choi, Mi-Jung;Kim, Hyun-Jung;Cho, Byung-Wook
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.4
    • /
    • pp.33-44
    • /
    • 2009
  • Water curtain of an underground LPG storage cavern is a facility to prevent leakage of high pressure gases, for which groundwater should flow freely towards the cavern and groundwater level also must be stably maintained. In this study, in order to evaluate qualities of seepage water and surrounding groundwater of an underground LPG storage cavern in Yeosu, 4 rounds of samplings, field measurements and laboratory analyses (February, May, August, October of 2007) were conducted. According to field measurements, pH was weak acidic to neutral but it gradually increased with time. Electrical conductivity (EC) of groundwater near a salt stack showed very high values between 10.47 and 38.50 mS/cm. Dissolved oxygen (DO) showed a very wide range of 0.20~8.74 mg/L and a mean of oxidation-reduction potential (ORP) was 159 mV, which indicated an oxidized condition. Levels of $Fe^{2+}$ and $Mn^{2+}$ were mostly less than 3 mg/L. All of seepage waters showed a Na-Cl type while only groundwater near the salt stack showed a Na-Cl type with a high total dissolved solid. The other groundwaters exhibited typical $Ca-HCO_3$ types. Levels of aerobic bacteria were mostly very high (573-39,520 CFU/mL). Based on the analyses of these hydrochemistry and biological characteristics, it is concluded that there are no particular problems in groundwater and seepage water, which not causing a trouble in the cavern operation. However, both for control of bio-clogging and for sustainable operation of the water curtain system, a regular hydrochemical and microbiological monitoring is required for the seepage water and surrounding groundwater.

Water Digital Twin for High-tech Electronics Industrial Wastewater Treatment System (I): e-ASM Development and Digital Simulation Implementation (첨단 전자산업 폐수처리시설의 Water Digital Twin(I): e-ASM 모델 개발과 Digital Simulation 구현)

  • Shim, Yerim;Lee, Nahui;Jeong, Chanhyeok;Heo, SungKu;Kim, SangYoon;Nam, KiJeon;Yoo, ChangKyoo
    • Clean Technology
    • /
    • v.28 no.1
    • /
    • pp.63-78
    • /
    • 2022
  • Electronics industrial wastewater treatment facilities release organic wastewaters containing high concentrations of organic pollutants and more than 20 toxic non-biodegradable pollutants. One of the major challenges of the fourth industrial revolution era for the electronics industry is how to treat electronics industrial wastewater efficiently. Therefore, it is necessary to develop an electronics industrial wastewater modeling technique that can evaluate the removal efficiency of organic pollutants, such as chemical oxygen demand (COD), total nitrogen (TN), total phosphorous (TP), and tetramethylammonium hydroxide (TMAH), by digital twinning an electronics industrial organic wastewater treatment facility in a cyber physical system (CPS). In this study, an electronics industrial wastewater activated sludge model (e-ASM) was developed based on the theoretical reaction rates for the removal mechanisms of electronics industrial wastewater considering the growth and decay of micro-organisms. The developed e-ASM can model complex biological removal mechanisms, such as the inhibition of nitrification micro-organisms by non-biodegradable organic pollutants including TMAH, as well as the oxidation, nitrification, and denitrification processes. The proposed e-ASM can be implemented as a Water Digital Twin for real electronics industrial wastewater treatment systems and be utilized for process modeling, effluent quality prediction, process selection, and design efficiency across varying influent characteristics on a CPS.

Effects of Thawing Conditions in Sample Treatment on the Chemical Properties of East Siberian Ice Wedges (동시베리아 얼음쐐기 시료의 해동방법이 시료의 화학적 특성분석에 미치는 영향)

  • Subon Ko;Jinho Ahn;Alexandre Fedorov;Giehyeon Lee
    • Economic and Environmental Geology
    • /
    • v.55 no.6
    • /
    • pp.727-736
    • /
    • 2022
  • Ice wedges are subsurface ice mass structures that formed mainly by freezing precipitation with airborne dust and surrounding soil particles flowed through the active layer into the cracks growing by repeating thermal contractions in the deeper permafrost layer over time. These ice masses characteristically contain high concentrations of solutes and solids. Because of their unique properties and distribution, the possibility of harnessing ice wedges as an alternative archive for reconstructing paleoclimate and paleoenvironment has been recently suggested despite limited studies. It is imperative to preserve the physicochemical properties of the ice wedge (e.g., solute concentration, mineral particles) without any potential alteration to use it as a proxy for reconstructing the paleo-information. Thawing the ice wedge samples is prerequisite for the assessment of their physicochemical properties, during which the paleo-information could be unintentionally altered by any methodological artifact. This study examined the effect of thawing conditions and procedures on the physicochemical properties of solutes and solid particles in ice wedge samples collected from Cyuie, East Siberia. Four different thawing conditions with varying temperatures (4 and 23℃) and oxygen exposures (oxic and anoxic) for the ice wedge sample treatment were examined. Ice wedge samples thawed at 4℃ under anoxic conditions, wherein biological activity and oxidation were kept to a minimum, were set as the standard thawing conditions to which the effects of temperature and oxygen were compared. The results indicate that temperature and oxygen exposure have negligible effects on the physicochemical characteristics of the solid particles. However, the chemical features of the solution (e.g., pH, electric conductivity, alkalinity, and concentration of major cations and trace elements) at 4℃ under oxic conditions were considerably altered, compared to those measured under the standard thawing conditions. This study shows that the thawing condition of ice wedge samples can affect their chemical features and thereby the geochemical information therein for the reconstruction of the paleoclimate and/or paleoenvironment.

Studies on Nutrio-physiology of Low Productive Rice Plants (수도저위생산력(水稻低位生産力)의 원인구명(原因究明)에 관(關)한 영양생리적연구(營養生理的硏究))

  • Park, Jun-Kyu
    • Applied Biological Chemistry
    • /
    • v.17 no.1
    • /
    • pp.1-30
    • /
    • 1974
  • Present study was undertaken to elucidate the relationship between uptake of nutrients and photosynthetic activities, and the translocation of several mineral nutrients in rice plants which were grown under different cultural conditions, utilizing radioactive tracer technique. Particular emphasis was placed on the analysis of patterns of nutrient uptake, the relationship between nutritional conditions and yield components. For this, rice plants grown on either low or high yielding fields at different growth stage were subjected to this study. The results are summarized as follows; 1. Varietal difference was observed in the uptake of potassium and phosphorus. Kusabue and Jinheung had good capacity but Paldal had rather poor capacity for the uptake of the both nutrients. 2. For rice plants, a high positive correlation was found between the oxidation of alpha plaus-naphthylamine by root and uptake of phosphorus. 3. Carbon assimilation rate repended on rice varieties. It was high in Noindo, Gutaenajuok #3 Suweon #82 and Jinheung but low in Taegujo, Kwanok, Yugu #132 etc. 4. Heavy application of nitrogen increased carbon assimilation in rice plants but this also depressed translocation of certain carbohydrates to ears. 5. Carbon assimilation wan greatly hampered in rice plants deficient in magnesium, phosphorus or potassium. 6. Total dry matter after ear formation stage, was much higher in rice plants grown in high yielding fields than those grown in low yielding fields. 7. Leaf area index(LAI) reached maximum at heading stage and decreased thereafter in high yielding fields. But in low yielding fields, it reached maximum before heading and sharply decreased thereafter due to early senescence of lower leaves. 8. In general, light transmission ratio (LTR) of leaves was higher in the early growth stage and lower in later stages. Higher ratio of LTR to leaf area index, was found in the rice grown in high yielding fields than those in low yielding fields. 9. Net photosynthetic activity decreased with the increase in leaf area index but was higher in high yielding fields than in low yielding fields. 10. After the ear formation stage, nitrogen, potassium and silicon as weil as $K_2O/N$ in straw were higher in high yielding fields than those in low yielding fields. 11. Nitrogen, phosphorus, potassium and magnesium taken up by rice plants in low yielding fields before heading stage were readily translocated to ears than those in high yielding fields. This suggests greater redistribution of nutrients in straw occurs due to lower uptake, in later growth stages, by rice plants grown in low yielding fields and hence results in early senescence due to nutrient deprivation. 12. In the high yielding fields nitrogen uptake by rice was slow but continuous throughout the life of the plants resulting in a large uptake even after heading. But, in low yielding fields the uptake was fast before heading and slow after heading. 13. A high positive correlation was found between the contents of nitrogen and potassium in the straw at heading stage and grain yield. Positive correlation was also found to hold between the contents of potassium, silicon, $K_2O/N$, $SiO_2/N$ in the straw at harvesting stage, and grain yield. 14. Carbon assimilation was greately hampered in rice plants deficient in magensium, phosphorus or potassium. 15. Uptake of nitrogen, phosphorus, potassium, silicon and manganese by rice was considerably higher in high yielding fields and reached maximum at ear formation stage. 16. In rice, a high positive correlation was discovered between total uptake of nitrogen, phosphorus, potassium, calcium, magnesium, silicon, manganese at harvesting stage and grain yield. 17. In rice, a high positive correlation was found between the total uptake of nitrogen, phosphorus, potassium, calcium, magnesium, silicon at harvesting stage, and number of spikelets per $3.3\;m^2$. In addition, a correlation was found between the total uptake of nitrogen and potassium and number of panicles per hill.

  • PDF

Field Studios of In-situ Aerobic Cometabolism of Chlorinated Aliphatic Hydrocarbons

  • Semprini, Lewts
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.3-4
    • /
    • 2004
  • Results will be presented from two field studies that evaluated the in-situ treatment of chlorinated aliphatic hydrocarbons (CAHs) using aerobic cometabolism. In the first study, a cometabolic air sparging (CAS) demonstration was conducted at McClellan Air Force Base (AFB), California, to treat chlorinated aliphatic hydrocarbons (CAHs) in groundwater using propane as the cometabolic substrate. A propane-biostimulated zone was sparged with a propane/air mixture and a control zone was sparged with air alone. Propane-utilizers were effectively stimulated in the saturated zone with repeated intermediate sparging of propane and air. Propane delivery, however, was not uniform, with propane mainly observed in down-gradient observation wells. Trichloroethene (TCE), cis-1, 2-dichloroethene (c-DCE), and dissolved oxygen (DO) concentration levels decreased in proportion with propane usage, with c-DCE decreasing more rapidly than TCE. The more rapid removal of c-DCE indicated biotransformation and not just physical removal by stripping. Propane utilization rates and rates of CAH removal slowed after three to four months of repeated propane additions, which coincided with tile depletion of nitrogen (as nitrate). Ammonia was then added to the propane/air mixture as a nitrogen source. After a six-month period between propane additions, rapid propane-utilization was observed. Nitrate was present due to groundwater flow into the treatment zone and/or by the oxidation of tile previously injected ammonia. In the propane-stimulated zone, c-DCE concentrations decreased below tile detection limit (1 $\mu$g/L), and TCE concentrations ranged from less than 5 $\mu$g/L to 30 $\mu$g/L, representing removals of 90 to 97%. In the air sparged control zone, TCE was removed at only two monitoring locations nearest the sparge-well, to concentrations of 15 $\mu$g/L and 60 $\mu$g/L. The responses indicate that stripping as well as biological treatment were responsible for the removal of contaminants in the biostimulated zone, with biostimulation enhancing removals to lower contaminant levels. As part of that study bacterial population shifts that occurred in the groundwater during CAS and air sparging control were evaluated by length heterogeneity polymerase chain reaction (LH-PCR) fragment analysis. The results showed that an organism(5) that had a fragment size of 385 base pairs (385 bp) was positively correlated with propane removal rates. The 385 bp fragment consisted of up to 83% of the total fragments in the analysis when propane removal rates peaked. A 16S rRNA clone library made from the bacteria sampled in propane sparged groundwater included clones of a TM7 division bacterium that had a 385bp LH-PCR fragment; no other bacterial species with this fragment size were detected. Both propane removal rates and the 385bp LH-PCR fragment decreased as nitrate levels in the groundwater decreased. In the second study the potential for bioaugmentation of a butane culture was evaluated in a series of field tests conducted at the Moffett Field Air Station in California. A butane-utilizing mixed culture that was effective in transforming 1, 1-dichloroethene (1, 1-DCE), 1, 1, 1-trichloroethane (1, 1, 1-TCA), and 1, 1-dichloroethane (1, 1-DCA) was added to the saturated zone at the test site. This mixture of contaminants was evaluated since they are often present as together as the result of 1, 1, 1-TCA contamination and the abiotic and biotic transformation of 1, 1, 1-TCA to 1, 1-DCE and 1, 1-DCA. Model simulations were performed prior to the initiation of the field study. The simulations were performed with a transport code that included processes for in-situ cometabolism, including microbial growth and decay, substrate and oxygen utilization, and the cometabolism of dual contaminants (1, 1-DCE and 1, 1, 1-TCA). Based on the results of detailed kinetic studies with the culture, cometabolic transformation kinetics were incorporated that butane mixed-inhibition on 1, 1-DCE and 1, 1, 1-TCA transformation, and competitive inhibition of 1, 1-DCE and 1, 1, 1-TCA on butane utilization. A transformation capacity term was also included in the model formation that results in cell loss due to contaminant transformation. Parameters for the model simulations were determined independently in kinetic studies with the butane-utilizing culture and through batch microcosm tests with groundwater and aquifer solids from the field test zone with the butane-utilizing culture added. In microcosm tests, the model simulated well the repetitive utilization of butane and cometabolism of 1.1, 1-TCA and 1, 1-DCE, as well as the transformation of 1, 1-DCE as it was repeatedly transformed at increased aqueous concentrations. Model simulations were then performed under the transport conditions of the field test to explore the effects of the bioaugmentation dose and the response of the system to tile biostimulation with alternating pulses of dissolved butane and oxygen in the presence of 1, 1-DCE (50 $\mu$g/L) and 1, 1, 1-TCA (250 $\mu$g/L). A uniform aquifer bioaugmentation dose of 0.5 mg/L of cells resulted in complete utilization of the butane 2-meters downgradient of the injection well within 200-hrs of bioaugmentation and butane addition. 1, 1-DCE was much more rapidly transformed than 1, 1, 1-TCA, and efficient 1, 1, 1-TCA removal occurred only after 1, 1-DCE and butane were decreased in concentration. The simulations demonstrated the strong inhibition of both 1, 1-DCE and butane on 1, 1, 1-TCA transformation, and the more rapid 1, 1-DCE transformation kinetics. Results of tile field demonstration indicated that bioaugmentation was successfully implemented; however it was difficult to maintain effective treatment for long periods of time (50 days or more). The demonstration showed that the bioaugmented experimental leg effectively transformed 1, 1-DCE and 1, 1-DCA, and was somewhat effective in transforming 1, 1, 1-TCA. The indigenous experimental leg treated in the same way as the bioaugmented leg was much less effective in treating the contaminant mixture. The best operating performance was achieved in the bioaugmented leg with about over 90%, 80%, 60 % removal for 1, 1-DCE, 1, 1-DCA, and 1, 1, 1-TCA, respectively. Molecular methods were used to track and enumerate the bioaugmented culture in the test zone. Real Time PCR analysis was used to on enumerate the bioaugmented culture. The results show higher numbers of the bioaugmented microorganisms were present in the treatment zone groundwater when the contaminants were being effective transformed. A decrease in these numbers was associated with a reduction in treatment performance. The results of the field tests indicated that although bioaugmentation can be successfully implemented, competition for the growth substrate (butane) by the indigenous microorganisms likely lead to the decrease in long-term performance.

  • PDF