• Title/Summary/Keyword: biological networks

Search Result 299, Processing Time 0.03 seconds

Characterization of the Alzheimer's disease-related network based on the dynamic network approach (동적인 개념을 적용한 알츠하이머 질병 네트워크의 특성 분석)

  • Kim, Man-Sun;Kim, Jeong-Rae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.6
    • /
    • pp.529-535
    • /
    • 2015
  • Biological networks have been handled with the static concept. However, life phenomena in cells occur depending on the cellular state and the external environment, and only a few proteins and their interactions are selectively activated. Therefore, we should adopt the dynamic network concept that the structure of a biological network varies along the flow of time. This concept is effective to analyze the progressive transition of the disease. In this paper, we applied the proposed method to Alzheimer's disease to analyze the structural and functional characteristics of the disease network. Using gene expression data and protein-protein interaction data, we constructed the sub-networks in accordance with the progress of disease (normal, early, middle and late). Based on this, we analyzed structural properties of the network. Furthermore, we found module structures in the network to analyze the functional properties of the sub-networks using the gene ontology analysis (GO). As a result, it was shown that the functional characteristics of the dynamics network is well compatible with the stage of the disease which shows that it can be used to describe important biological events of the disease. Via the proposed approach, it is possible to observe the molecular network change involved in the disease progression which is not generally investigated, and to understand the pathogenesis and progression mechanism of the disease at a molecular level.

Automation Development in Water and Wastewater Systems

  • Olsson, Gustaf
    • Environmental Engineering Research
    • /
    • v.12 no.5
    • /
    • pp.197-200
    • /
    • 2007
  • Advanced control is getting increasingly demanded in water and wastewater treatment systems. Various case studies have shown significant savings in operating costs, including energy costs, and remarkably short payback times. It has been demonstrated that instrumentation, control and automation (ICA) may increase the capacity of biological nutrient removing wastewater treatment plants by 10-30% today. With further understanding and exploitation of the mechanisms involved in biological nutrient removal the improvements due to ICA may reach another 20-50% of the total system investments within the next 10-20 years. Disturbances are the reason for control of any system. In a wastewater treatment system they are mostly related to the load variations, but many disturbances are created also within the plant. In water supply systems some of the major disturbances are related the customer demand as well as to leakages or bursts in the pipelines or the distribution networks. Hardly any system operates in steady state but is more or less in a transient state all the time. Water and energy are closely related. The role of energy in water and wastewater operations is discussed. With increasing energy costs and the threatening climate changes this issue will grow in importance.

Protein Interaction Databases and Its Application (단백질 상호작용 데이터베이스 현황 및 활용 방안)

  • Kim, Min Kyung;Park, Hyun Seok
    • IMMUNE NETWORK
    • /
    • v.2 no.3
    • /
    • pp.125-132
    • /
    • 2002
  • In the past, bioinformatics was often regarded as a difficult and rather remote field, practiced only by computer scientists and not a practical tool available to biologists. However, the various on-going genome projects have had a serious impact on biological sciences in various ways and now there is little doubt that bioinformatics is an essential part of the research environment, with a wealth of biological information to analyze and predict. Fully sequenced genomes made us to have additional insights into the functional properties of the encoded proteins and made it possible to develop new tools and schemes for functional biology on a proteomic scale. Among those are the yeast two-hybrid system, mass spectrometry and microarray: the technology of choice to detect protein-protein interactions. These functional insights emerge as networks of interacting proteins, also known as "pathway informatics" or "interactomics". Without exception it is no longer possible to make advances in the signaling/regulatory pathway studies without integrating information technologies with experimental technologies. In this paper, we will introduce the databases of protein interaction worldwide and discuss several challenging issues regarding the actual implementation of databases.

Neuron-on-a-Chip technology: Microelectrode Array System and Neuronal Patterning (뉴런온칩 기술: 미세전극칩시스템과 신경세포 패터닝 기술)

  • Nam, Yoon-Key
    • Journal of Biomedical Engineering Research
    • /
    • v.30 no.2
    • /
    • pp.103-112
    • /
    • 2009
  • Neuron-on-a-Chip technology is based on advanced neuronal culture technique, surface micropatterning, microelectrode array technology, and multi-dimensional data analysis techniques. The combination of these techniques allowed us to design and analyze live biological neural networks in vitro using real neurons. In this review article, two underlying technologies are reviewed: Microelectrode array technology and Neuronal patterning technology. There are new opportunities in the fusion of these technologies to apply them in neurobiology, neuroscience, neural prostheses, and cell-based biosensor areas.

Prediction of acceleration and impact force values of a reinforced concrete slab

  • Erdem, R. Tugrul
    • Computers and Concrete
    • /
    • v.14 no.5
    • /
    • pp.563-575
    • /
    • 2014
  • Concrete which is a composite material is frequently used in construction works. Properties and behavior of concrete are significant under the effect of different loading cases. Impact loading which is a sudden dynamic one may have destructive effects on structures. Testing apparatuses are designed to investigate the impact effect on test members. Artificial Neural Network (ANN) is a computational model that is inspired by the structure or functional aspects of biological neural networks. It can be defined as an emulation of biological neural system. In this study, impact parameters as acceleration and impact force values of a reinforced concrete slab are obtained by using a testing apparatus and essential test devices. Afterwards, ANN analysis which is used to model different physical dynamic processes depending on several variables is performed in the numerical part of the study. Finally, test and predicted results are compared and it's seen that ANN analysis is an alternative way to predict the results successfully.

MicroRNA controls of cellular senescence

  • Suh, Nayoung
    • BMB Reports
    • /
    • v.51 no.10
    • /
    • pp.493-499
    • /
    • 2018
  • Cellular senescence is a state of permanent cell-cycle arrest triggered by different internal and external stimuli. This phenomenon is considered to be both beneficial and detrimental depending on the cell types and biological contexts. During normal embryonic development and after tissue injury, cellular senescence is critical for tissue remodeling. In addition, this process is useful for arresting growth of tumor cells, particularly during early onset of tumorigenesis. However, accumulation of senescent cells decreases tissue regenerative capabilities and induces inflammation, which is responsible for cancer and organismal aging. Therefore cellular senescence has to be tightly regulated, and dysregulation might lead to the aging and human diseases. Among many regulators of cellular senescence, in this review, I will focus on microRNAs, small non-coding RNAs playing critical roles in diverse biological events including cellular senescence.

Emerging functions for ANKHD1 in cancer-related signaling pathways and cellular processes

  • de Almeida, Bruna Oliveira;Machado-Neto, Joao Agostinho
    • BMB Reports
    • /
    • v.53 no.8
    • /
    • pp.413-418
    • /
    • 2020
  • ANKHD1 (ankyrin repeat and KH domain containing 1) is a large protein characterized by the presence of multiple ankyrin repeats and a K-homology domain. Ankyrin repeat domains consist of widely existing protein motifs in nature, they mediate protein-protein interactions and regulate fundamental biological processes, while the KH domain binds to RNA or ssDNA and is associated with transcriptional and translational regulation. In recent years, studies containing relevant information on ANKHD1 in cancer biology and its clinical relevance, as well as the increasing complexity of signaling networks in which this protein acts, have been reported. Among the signaling pathways of interest in oncology regulated by ANKHD1 are Hippo signaling, JAK/STAT, and STMN1. The scope of the present review is to survey the current knowledge and highlight future perspectives for ANKHD1 in the malignant phenotype of cancer cells, exploring biological, functional, and clinical reports of this protein in cancer.

Analog MOS circuits for motion detection based on correlation neural networks (상호연관 신경망에 기반을 둔 이동 검출을 위한 아날로그 집적회로)

  • ;;;Masahiro Ohtani;Hiroo Yonezu
    • Proceedings of the IEEK Conference
    • /
    • 2000.11c
    • /
    • pp.149-152
    • /
    • 2000
  • We propose simple analog MOS circuits producing the one-dimensional compact motion-sensing circuits. In the proposed circuit, the optical flow is computed by a number of local motion sensors which are based on biological motion detectors. Mimicking the structure of biological motion detectors made the circuit structure quite simple, compared with conventional velocity sensing circuits. Extensive simulation results by a simulation program of integrated circuit emphasis (SPICE) indicated that the proposed circuits could compute local velocities of a moving light spot and showed direction selectivity for the moving spot

  • PDF

Identification and Control of Nonlinear System Using Dynamic Neural Model with State Parameter Representation (상태변수 표현을 가진 동적 신경망을 이용한 비선형 시스템의 식별과 제어)

  • Park, Seong-Wook;Seo, Bo-Hyeok
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.157-160
    • /
    • 1995
  • Neural networks potentially offer a general framework for modeling and control of nonlinear systems. The conventional neural network models are a parody of biological neural structures, and have very slow learning. In order to emulate some, dynamic functions, such as learning and adaption, and to better reflect the dynamics of biological neurons, M.M.Gupta and D.H.Rao have developed a 'dynamic neural model'(DNU). Proposed neural unit model is to introduce some dynamics to the neuron transfer function, such that the neuron activity depends on internal states. Numerical examples are presented for a model system. Those case studies showed that the proposed DNU is so useful in practical sense.

  • PDF

Trajectory Tracking Control of a Fish-Mimetic Robot Using CPG (CPG 를 이용한 물고기 모사 로봇의 궤적 추종 제어)

  • Kim, Dong-Hee;Lee, Seung-Hee;Kwon, Jong-Hyun;Han, Cheol-Heui;Park, Jong-Hyeon
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.870-875
    • /
    • 2008
  • The main objective of this paper is to control a trajectory tracking of the fish-mimetic robot by CPG (Central Pattern Generator), which is biological approach. CPG is biological neural networks that generate rhythmic movements for locomotion of animals, such as walking, running, swimming and flying. Animals show marvelous ability of autonomous dynamic adaptation for an unsteady fluid dynamic environment or various environments. So, we propose the 3-DOF CPG controller to track the trajectory of the fish robot in plane motion. The conformity of the proposed control algorithm is validated by simulation for a fish robot model, which is made by a commercial dynamic package.

  • PDF