• Title/Summary/Keyword: biological networks

Search Result 301, Processing Time 0.027 seconds

Complex Dynamical Networks: An Overview

  • Chen, Guanrong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.94.5-94
    • /
    • 2002
  • The current study of complex dynamical networks is pervading all kinds of sciences today, ranging from physical to biological, even to social sciences. its impact on modern engineering and technology is prominent and will be far-reaching. Typical complex dynamical networks include the World Wide Web, the Internet, various wireless communication networks, meta-bolic networks, biological neural networks, social connection networks, scientific cooperation and citation networks, and so on. Research on fundamental properties and dynamical features of such complex networks have become overwhelm ing. This talk will provide a brief overview of some basic concepts about com plex dynamical netwo...

  • PDF

Review of Biological Network Data and Its Applications

  • Yu, Donghyeon;Kim, MinSoo;Xiao, Guanghua;Hwang, Tae Hyun
    • Genomics & Informatics
    • /
    • v.11 no.4
    • /
    • pp.200-210
    • /
    • 2013
  • Studying biological networks, such as protein-protein interactions, is key to understanding complex biological activities. Various types of large-scale biological datasets have been collected and analyzed with high-throughput technologies, including DNA microarray, next-generation sequencing, and the two-hybrid screening system, for this purpose. In this review, we focus on network-based approaches that help in understanding biological systems and identifying biological functions. Accordingly, this paper covers two major topics in network biology: reconstruction of gene regulatory networks and network-based applications, including protein function prediction, disease gene prioritization, and network-based genome-wide association study.

CONVERGENCE OF A GENERALIZED BELIEF PROPAGATION ALGORITHM FOR BIOLOGICAL NETWORKS

  • CHOO, SANG-MOK;KIM, YOUNG-HEE
    • Journal of applied mathematics & informatics
    • /
    • v.40 no.3_4
    • /
    • pp.515-530
    • /
    • 2022
  • A factor graph and belief propagation can be used for finding stochastic values of link weights in biological networks. However it is not easy to follow the process of use and so we presented the process with a toy network of three nodes in our prior work. We extend this work more generally and present numerical example for a network of 100 nodes.

Chemical Genomics and Medicinal Systems Biology: Chemical Control of Genomic Networks in Human Systems Biology for Innovative Medicine

  • Kim, Tae-Kook
    • BMB Reports
    • /
    • v.37 no.1
    • /
    • pp.53-58
    • /
    • 2004
  • With advances in determining the entire DNA sequence of the human genome, it is now critical to systematically identify the function of a number of genes in the human genome. These biological challenges, especially those in human diseases, should be addressed in human cells in which conventional (e.g. genetic) approaches have been extremely difficult to implement. To overcome this, several approaches have been initiated. This review will focus on the development of a novel 'chemical genetic/genomic approach' that uses small molecules to 'probe and identify' the function of genes in specific biological processes or pathways in human cells. Due to the close relationship of small molecules with drugs, these systematic and integrative studies will lead to the 'medicinal systems biology approach' which is critical to 'formulate and modulate' complex biological (disease) networks by small molecules (drugs) in human bio-systems.

Challenges and New Approaches in Genomics and Bioinformatics

  • Park, Jong Hwa;Han, Kyung Sook
    • Genomics & Informatics
    • /
    • v.1 no.1
    • /
    • pp.1-6
    • /
    • 2003
  • In conclusion, the seemingly fuzzy and disorganized data of biology with thousands of different layers ranging from molecule to the Internet have refused so far to be mapped precisely and predicted successfully by mathematicians, physicists or computer scientists. Genomics and bioinformatics are the fields that process such complex data. The insights on the nature of biological entities as complex interaction networks are opening a door toward a generalization of the representation of biological entities. The main challenge of genomics and bioinformatics now lies in 1) how to data mine the networks of the domains of bioinformatics, namely, the literature, metabolic pathways, and proteome and structures, in terms of interaction; and 2) how to generalize the networks in order to integrate the information into computable genomic data for computers regardless of the levels of layer. Once bioinformatists succeed to find a general principle on the way components interact each other to form any organic interaction network at genomic scale, true simulation and prediction of life in silico will be possible.

The Effects of Feedback Loops on the Network Robustness by using a Random Boolean Network Model (랜덤 불리언 네트워크 모델을 이용한 되먹임 루프가 네트워크 강건성에 미치는 영향)

  • Kwon, Yung-Keun
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.37 no.3
    • /
    • pp.138-146
    • /
    • 2010
  • It is well known that many biological networks are very robust against various types of perturbations, but we still do not know the mechanism of robustness. In this paper, we find that there exist a number of feedback loops in a real biological network compared to randomly generated networks. Moreover, we investigate how the topological property affects network robustness. To this end, we properly define the notion of robustness based on a Boolean network model. Through extensive simulations, we show that the Boolean networks create a nearly constant number of fixed-point attractors, while they create a smaller number of limit-cycle attractors as they contain a larger number of feedback loops. In addition, we elucidate that a considerably large basin of a fixed-point attractor is generated in the networks with a large number of feedback loops. All these results imply that the existence of a large number of feedback loops in biological networks can be a critical factor for their robust behaviors.

The Use of Artificial Neural Networks in the Monitoring of Spot Weld Quality (인공신경회로망을 이용한 저항 점용접의 품질감시)

  • 임태균;조형석;장희석
    • Journal of Welding and Joining
    • /
    • v.11 no.2
    • /
    • pp.27-41
    • /
    • 1993
  • The estimation of nugget sizes was attempted by utilizing the artificial neural networks method. Artificial neural networks is a highly simplified model of the biological nervous system. Artificial neural networks is composed of a large number of elemental processors connected like biological neurons. Although the elemental processors have only simple computation functions, because they are connected massively, they can describe any complex functional relationship between an input-output pair in an autonomous manner. The electrode head movement signal, which is a good indicator of corresponding nugget size was determined by measuring the each test specimen. The sampled electrode movement data and the corresponding nugget sizes were fed into the artificial neural networks as input-output pairs to train the networks. In the training phase for the networks, the artificial neural networks constructs a fuctional relationship between the input-output pairs autonomusly by adjusting the set of weights. In the production(estimation) phase when new inputs are sampled and presented, the artificial neural networks produces appropriate outputs(the estimates of the nugget size) based upon the transfer characteristics learned during the training mode. Experimental verification of the proposed estimation method using artificial neural networks was done by actual destructive testing of welds. The predicted result by the artifficial neural networks were found to be in a good agreement with the actual nugget size. The results are quite promising in that the real-time estimation of the invisible nugget size can be achieved by analyzing the process variable without any conventional destructive testing of welds.

  • PDF

A Backpropagation Learning Algorithm for pRAM Networks (pRAM회로망을 위한 역전파 학습 알고리즘)

  • 완재희;채수익
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.1
    • /
    • pp.107-114
    • /
    • 1994
  • Hardware implementation of the on-chip learning artificial neural networks is important for real-time processing. A pRAM model is based on probabilistic firing of a biological neuron and can be implemented in the VLSI circuit with learning capability. We derive a backpropagation learning algorithm for the pRAM networks and present its circuit implementation with stochastic computation. The simulation results confirm the good convergence of the learning algorithm for the pRAM networks.

  • PDF

An integrated Bayesian network framework for reconstructing representative genetic regulatory networks.

  • Lee, Phil-Hyoun;Lee, Do-Heon;Lee, Kwang-Hyung
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2003.10a
    • /
    • pp.164-169
    • /
    • 2003
  • In this paper, we propose the integrated Bayesian network framework to reconstruct genetic regulatory networks from genome expression data. The proposed model overcomes the dimensionality problem of multivariate analysis by building coherent sub-networks from confined gene clusters and combining these networks via intermediary points. Gene Shaving algorithm is used to cluster genes that share a common function or co-regulation. Retrieved clusters incorporate prior biological knowledge such as Gene Ontology, pathway, and protein protein interaction information for extracting other related genes. With these extended gene list, system builds genetic sub-networks using Bayesian network with MDL score and Sparse Candidate algorithm. Identifying functional modules of genes is done by not only microarray data itself but also well-proved biological knowledge. This integrated approach can improve there liability of a network in that false relations due to the lack of data can be reduced. Another advantage is the decreased computational complexity by constrained gene sets. To evaluate the proposed system, S. Cerevisiae cell cycle data [1] is applied. The result analysis presents new hypotheses about novel genetic interactions as well as typical relationships known by previous researches [2].

  • PDF