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Abstract

In this paper, we propose the integrated Bayesian network framework to reconstruct genetic regulatory
networks from genome expression data. The proposed model overcomes the dimensionality problem of
multivariate analysis by building coherent sub-networks from confined gene clusters and combining these
networks via intermediary points. Gene Shaving algorithm is used to cluster genes that share a common
function or co-regulation. Retrieved clusters incorporate prior biological knowledge such as Gene
Ontology, pathway, and protein protein interaction information for extracting other related genes. With
these extended gene list, system builds genetic sub-networks using Bayesian network with MDL score
and Sparse Candidate algorithm. Identifying functional modules of genes is done by not only microarray
data itself but also well-proved biological knowledge. This integrated approach can improve the
reliability of a network in that false relations due to the lack of data can be reduced. Another advantage is
the decreased computational complexity by constrained gene sets. To evaluate the proposed system, S.
Cerevisiae cell cycle data [1] is applied. The result analysis presents new hypotheses about novel genetic
interactions as well as typical relationships known by previous researches [2].

Introduction

Cells have tremendous diversity in its shape and
function but share exactly same genetic blueprint.
To understand these distinct cellular activities of
an identity, we need to understand the
mechanisms of protein synthesis regulation,
Formally, these relationships are represented as a
genetic regulatory network, the set of mutually
activating and repressing genes and gene products
and their interactions [3].

Currently, microarray data is being widely
used for reconstructing a genetic regulatory
network [4,5,6,7]. Inferring relationships from
these transcript levels of thousands of genes
confronts several challenges. First, not all of the
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expression levels of genes can be measured.
Intercellular components like hormone, and
regulation part by post-translation or small
molecules are missed, too. Most of all, measured
data is very noisy and the number of experiment
sample is far from sufficient for drawing a
network structure reliably. A variety of techniques
have been applied to overcome these obstacles.
These includes discrete models, such as a Boolean
network [8, 9] and continuous models based on
differential equation, such as an continuous
recurrent neural network [10] or power-law
formalisms [11]. Probabilistic graphical models
like a Bayesian network, also known as a causal
network, have been used, too [2, 12, 13, 14].

A Bayesian network [15] is a directed and
acyclic graph that encodes a joint probability
distribution based on the properties of conditional
independence between variables. It can describe
complex stochastic processes, thus appropriate for
learning from noisy observations. Also Bayesian



network is particularly useful for dealing
structures composed of locally interacting
components like biological processes. Previous
research done by Friedman et al. [2] tried to
overcome the dimensionality problem by seeking
the set of plausible networks and characterizing
features that are common to most of these
networks rather than picking up a single model.
Here, we present the model uses this partial model
of Bayesian network as a framework and expands
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Fig. 1. System architecture of
the integrated Bayesian network framework

it by incorporating clustering methods and well-
known biological knowledge, together (Fig. 1).

Main idea is to reduce the number of target
genes for learning one Bayesian network. For this,
the system organizes genes into coherent sub-
network modules. Other members of these
clustered functional sub-sets are retrieved using
diverse biological resources such as Gene
Ontology [16], pathway [17], and protein protein
interaction [18] information. With these reduced
number of genes in each set, the proposed system
can construct the genetic sub-network more
reliably. Bayesian networks are learned by MDL
score [19] and Sparse Candidate algorithm [20]
for search efficiency.

We use Gene Shaving algorithm [21,22] to
identify subsets of genes that are co-regulated or
have similar function. Gene Shaving identifies
genes with coherent expression patterns and large
variation across samples. This method differs
from other clustering algorithms in that genes are

permitted to belong to more than one cluster. Our
system utilizes these overlapped genes as
intermediary points to combine coherent sub-
networks as a whole at the last step. Also the
number of genes in each result cluster is relatively
small, approximately several to dozens. So even
after expanding genes from biological resources,
the number of genes in one set to be reconstructed
together is maintained below two hundreds.

Methods (Materials and Methods/
Systems and Methods etc)

Data Preprocessing

If the number of genes in microarray expression
data is N and the number of samples is p, data can
be considered as an N x p matrix, X=x;; (i=1,..,.N,
j=1,..,p) The proposed system selects genes that
show certain amount of expression change (here
4-fold). For imputing missing values, simple row
average estimation is used [23]. The genes having
relatively large consecutive omissions (in the
experiments, we set 3) are sanitized.

Clustering using Gene Shaving algorithm

Step I : The system seeks nested clusters Sy of
size k having the highest variance of the signed
column mean. Since an eigen gene denotes the
normalized linear combination of genes with

largest variance across the samples, the largest

principal component of the genes is computed. To
get the nested clusters from size k=N to k=1, a
fraction of the genes having lowest correlation
with the leading principal component are shaved
off from the current gene set. This whole process
is iterated until only one gene remains.

Step 2 : The optimal cluster size k is estimated in
the direction of high coherence between members
of the cluster. The between and within variances
of each cluster are calculated as [21,22]:
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A large value of variance ratio R, implies
that a cluster is composed of tightly consistent
genes. For differentiating real patterns from
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spurious ones, the cluster that shows the largest
gap with the randomly permuted matrix is
selected as the optimum.

argmaz, ( Gap( org ,(R,) - mean(permuted ,(Ry)) )

Step 3 : To remove the effect of genes in the
previously chosen clusters, the original data
matrix is orthogonalized and step 1| and step 2
are repeated until the desired number of clusters,
C, is found

Extending gene lists by Biological Knowledge

Using well-proven biological knowledge, the
proposed system looks for genes that may have
functional relationship with each clustered genes.
Gene Ontology from SGD [16], pathway
information from KEGG (Kyoto Encyclopedia of
Genes and Genomes) [17], and protein protein
interaction information from DIP (Database of
Interacting Proteins) [18] are used. Each cluster
includes found genes as a member.

Reconstruct the genetic regulation network by
Bayesian network

Step 1 : In this stage, the proposed system draws a
Bayesian network for each cluster. Let’s define
cluster j as a finite set Uj={X,, .., X4} of discrete
random variables where a variable X; denotes the
expression level of a gene in the cluster. First, the
system discretizes gene expression measurements
into 3 categories, under-expressed, constant, and
over-expressed (-0.5 and +0.5 is used as a
threshold). Computed values are stored as an Njx
p; data matrix, D;. Then, the system search for an
equivalence class of networks [24] that consist of
random variables in U; and best matches D;.

We uses MDL score as an evaluation
function for the posterior probability of a network
[25]. Since an optimal one balances the
complexity of the network with the degree of
fitness, score can be calculated as [19]:

DL(U, D, G} = DL,,(U, G) + DL,,,(D, G)
DL,4(U, G) = 3 (logllX;| + (1+Pa(X))logn) +
t
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DLyyy(D, G) = N3 H(X,) ~NY. I(X;;Pa(X))

[P0 = the cardinality of values each gene
H(X}Y) = the conditional entropy of X given Y
IX,Y) =the mutual information between variables X and ¥

A greedy hill climbing with random restart
algorithm is used as a heuristic search strategy.
For efficient learning, we restrict our search to the
small number of candidate parents based on
correlation between two variables. The limitation
caused from pair-wise selection is compromised
by measuring the discrepancy between estimated
Pg(Xi, X;) and empirical estimate P(X;, X;) [20].

Mpy (&1, & | B) =Dy PR, XJ) || P, X))

Step 2 : With the network built at step 1, 100-fold
Bootstrap method [26] is used for finding
confident Markov relations. The system samples
p; column vectors from D; with replacement and
makes m new Njxp; data matrix, Dg; (B=1,..m,
m=100) Learning procedure is applied for each
new data set and reliability is estimated as:

P
couf(fj == 3 f(G)
1=1

f{G) is 1 if f is a feature in G, and 0 otherwise.
System draws the network with features that have
higher confidence than 0.8 and connects the new
component to sub-graphs with dotted line if edges
between them have confidence above 0.6. For
each cluster, network reconstruction is done via
stepl and step2.

Step 3 : Networks are combined together if they
share genes as components. For example,
networks from cluster 1 and cluster 3 share gene
CLN2 and MCD1. Two networks can be linked
via a intermediary.
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Fig 2. networks from cluster 1 and cluster 3

Results

We used an S.cerevisiae gene expression data set
consisting of 79 microarray samples that
measured  under  different cell  cycle
synchronization methods [1]. The data contains
mRNA levels of 6177 ORFs. From this set, we
reconstructed genetic regulatory networks and
analyzed the results. Supplementary data are
available at WWW site:



http://bioif kaist.ac.kr/~phlee

Experimental Result

The system computed 30 clusters based on Gene
Shaving algorithm. 10% of genes were shaved
each step and permutation no was 5 (Fig. 3). For
determining the optimal size for each cluster, Gap
value was calculated. Cluster 2 is illustrated as an
example (Fig. 4). For each cluster, prior
biological knowledge was incorporated. Some
clusters have distinguishable characters based on
GO. Cluster 2 consists of mainly “cell wall
organization and biogenesis” genes. Cluster 4 has
only genes related with “galactose metabolism”.
Cluster 8 includes genes functioning “response to
copper ion”. And cluster 11 has “chromatin
assembly” genes and so on. Each learned sub-
network is a partial directed acyclic graph. As an
example, sub-networks from cluster 2 are shown

(Fig. 5)
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Fig. 5. Learned network of cluster 2

Biological Analysis
With few exceptions (about 20% new relations),
each of inferred networks recovered features
drawn at the previous research [2]. If mediator
gene is missed in the module, indirect
dependencies were denoted as a direct link or
those relations were lost. This reveals the
importance of identifying functional modules.

In the cluster 10, features with confidence
1.0 were found (Fig. 6). These relations between
four genes (HTA1, HTBI1, HHT1, HHF1) were
missed at the previous research [2]. They are
revealed as members of a ‘nucleosome protein
complex’, which performs a key role for mRNA
transcription. This shows that our integrated
method can recover exquisite biological
relationships which were lost by previous
approaches [2].
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Fig. 6. features with high conﬁdence in cluster 10

Constructed genetic network implies some
novel biological hypotheses about genetic
interaction. Some of top-ranked dominant genes
(MCD1, CLN2, SRO4, YOL007C, YOXI,
POL30, MSHS6) in the ordering relations [2] were
found in a sub-network drawn from cluster 1.
Intuitively, these genes are potential inducers of
the cell-cycle process according to the
characteristic of Gene Shaving clustering [21,22].
TOS4 and PRY2 are members of this sub-network
and the only unclassified components currently
based on MIPS[27]. We inferred that TOS4 and
PRY2 may function as a key regulator like MCD1,
RFA1, CLN2, SRO4, YOL007C, YOX1, POL30,
and MSHS6. From literature [28], we can find that
TOS4 is established as a transcription factor that
has 230 target genes and also regulated by SBF.
PRY?2 has strong similarity to PRY1, which is an
un-annotated gene itself. But PRY1 was identified
in association with YPRO86W(SUA7, SOH4), a
general RNA polymerase II transcription factor
[29]. This strongly indicates that PRY2 can be
related with transcription activity. This hypothesis
needs to be investigated further computationally
and also experimentally.

Complementary evidence of functional
annotation is also provided. SCW11 is known to
have week similarity to the protein, glucanase but
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currently unclassified gene. In the cluster 2,
SCW11 is directly linked with DSE2, DSE4, and
CTS1. All 3 genes are kinds of Glycosidases
(enzymes hydrolysing O- and S-glycosyl
compounds) and localize at the cell wall. Strong
dependencies among those genes (Table 1) drawn
from a microarray experiment strongly indicates
that SCW11 carries out enzyme functionality as a
glycosidase, too.

gene C known function
DSE2 | 0.96 | glucan 1,3-beta-glucosidase activity
DSE4 | 0.93 | endo-1,3-beta-glucanase
CTS1 | 0.95 | endochitinase

Table 1. Confidence of Markov relations

Discussion

The proposed system reconstructs networks from
microarray gene expression data by combining
Gene Shaving clustering [21,22] method and

biological knowledge with Bayesian network [15].

The main advantage of this approach is that
false positive relations due to the lack of data can
be reduced by pre-selecting sets of genes through
the microarray data itself as well as the previously
well proved biological knowledge, while the
trade-off is that sub-network can miss the related
gene components. Also, this approach is capable
of reducing computational complexity. The result
of S. Cerevisiae data [1] analysis shows this pros
and cons.

The authors are in the initial stage of on-
going project. We  consider following
improvements as further works. I) Identifying
functional sub-modules correctly contributes to
overall success of process. We are working on
improving methods for grouping related genes
more reliably. II) Genetic Regulators such as a
transcription factor or a signaling molecule need
to be stated clearly. And the regulation form like
activation or inhibition can be denoted. III)
Currently the system discretizes gene expression
values into 3 catagories according to the pre-
defined threshold. This simple discretization can
cause the loss of information in abundance. We
plan to apply finder ones [30, 31]. IV) Improved
heuristic search can be applied. V) The system
currently integrates biological information from
KEGG, GO and DIP. In the future, it will cover
more biological resources.
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