• 제목/요약/키워드: biological hydrogen

검색결과 525건 처리시간 0.03초

생물학적 수소생산 공정 (Biological Hydrogen Production Processes)

  • 신종환;박태현
    • Korean Chemical Engineering Research
    • /
    • 제44권1호
    • /
    • pp.16-22
    • /
    • 2006
  • 생물학적 수소생산 공정은 다른 열화학적 공정이나 전기화학적 공정에 비하여 환경친화적이며 에너지를 덜 소모하는 공정이다. 생물학적 수소생산 공정은 크게 두 가지로 구별할 수 있는데, 광합성에 의한 수소생산과 혐기발효에 의한 수소생산이 그것이다. 광합성에 의한 수소생산 공정은 주로 물로부터 수소를 생산하고 동시에 공기 중의 이산화탄소도 저감하는 특징을 가지고 있으며, 혐기발효에 의한 수소생산 공정은 유기 탄소원을 섭취하는 박테리아에 의한 발효를 통해 이루어지는 공정이다. 본 논문에서는 생물학적 수소생산 공정에 대한 그간의 연구들에 대하여 살펴 보았다.

Decolorization of Melanin by Lignin Peroxidase from Phanerochaete chrysosporium

  • Woo, Sung-Hwan;Cho, Jeung-Suk;Lee, Baek-Seok;Kim, Eun-Ki
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제9권4호
    • /
    • pp.256-260
    • /
    • 2004
  • Melanin was decolorized by lignin peroxidase from Phanerochaete chrysosporium. This decolorization reaction showed a Michaelis-Mentens type relationship between the decolorization rate and concentration of two substrates: melanin and hydrogen peroxide. Kinetic constants of the decolorization reaction were 0.1 OD$\sub$475//min ($V_{max}$) and 99.7 mg/L ($K_{m}$) for melanin and 0.08 OD$\sub$475//min ($V_{max}$) and 504.9 ${\mu}$M ($K_{m}$) for hydrogen peroxide, respectively. Depletion of hydrogen peroxide interrupted the decolorization reaction, indicating the essential requirement of hydrogen peroxide. Pulsewise feeding of hydrogen peroxide continued the decolorizing reaction catalyzed by lignin peroxidase. These results indicate that enzymatic decolorization of melanin has applications in the development of new cosmetic whitening agents.

생물학적인 방법을 통한 대체 에너지로서의 수소생산 (Hydrogen Production in Biological Way as Alternative Energy)

  • 조영화;조병훈;차형준
    • 유기물자원화
    • /
    • 제19권1호
    • /
    • pp.57-63
    • /
    • 2011
  • 화석연료가 고갈되어 감에 따라 사람들은 이를 대처할 수 있는 대체에너지를 찾기 시작했다. 이 대체 에너지는 환경 친화적이며 재생 가능해야 된다는 단서가 붙는데 그 중 가장 많은 주목을 받은 것이 수소이다. 현재 수소는 다양한 방법으로 생산되고 있는데 생물학적으로 수소를 생산하는 방법이 가장 환경 친화적인 방법으로 인식되고 있다. 그러나 아직 생물학적으로 수소를 생산하는 방법은 아직 상업화하기엔 경쟁력이 많이 부족하기 때문에 많은 연구자들이 바이오 수소 생산 방법과 그 생산성 및 생산수율을 높이기 위하여 노력하고 있다. 본 고에서는 생물학적 수소생산의 다양한 개발 접근방법들의 진행 추이를 정리하였다.

석유화학단지 수소 재활용 최적 네트워크 설계 (Optimal Hydrogen Recycling Network Design of Petrochemical Complex)

  • 정창현;이철진;김대현;한종훈
    • Korean Chemical Engineering Research
    • /
    • 제45권1호
    • /
    • pp.25-31
    • /
    • 2007
  • 석유화학단지내에서 석유화학공장과 정유공장과 같은 산업현장에서는 상당량의 수소가 부산물로 발생되고 있으나, 이는 대부분 자체적으로 연료로 사용되고 있다. 그러나 연료로 사용되는 상당량의 수소를 에너지원의 원료나 기타 공정의 원료로 재활용할 경우, 현재보다 수소의 가치를 높여서 사용할 수 있다. 본 연구에서는 석유화학단지내 공장간 수소 재활용 네트워크를 설계하였다. 수소 핀치 분석을 통하여 교환망 구성에 필요한 최소의 수소 요구 및 정제량을 파악하고, 네트워크 구성에 필요한 비용과 기타 제약 조건으로 최적화 문제를 구성하여 공급처(source)와 수요처(sink) 공장간에 최적으로 수소를 재활용하기 위한 네트워크를 설계하였다.

Hydrogen Peroxide, Its Measurement and Effect During Enzymatic Decoloring of Congo Red

  • Woo, Sung-Whan;Cho, Jeung-Suk;Hur, Byung-Ki;Shin, Dong-Hoon;Ryu, Keun-Gap;Kim, Eun-Ki
    • Journal of Microbiology and Biotechnology
    • /
    • 제13권5호
    • /
    • pp.773-777
    • /
    • 2003
  • The color of Congo red hinders the spectrometric measurements of a concentration of hydrogen peroxide and enzyme activity (Horseradish peroxidase; HRP) during enzymatic decoloring of Congo red. In this study, a method was developed to measure peroxidase activity and hydrogen peroxide concentration in the presence of Congo red. The oxidation product of HRP/hydrogen peroxide and ABTS(2,2'-azino-bis-(3-ethylbenzotriazoline-6-sulfonic acid)) formed a dark green color. The spectrum of this product showed absorption bands at 420 nm and 734 nm. When compared with the Congo red spectrum, the absorption at 734 nm of this product did not overlap with Congo red, thus making the hydrogen peroxide measurement possible even in the presence of Congo red. Kinetic study of decoloring of Congo red performed by this method showed that the decoloring reaction followed the Michaelis-Menten kinetics. Pulse feeding of hydrogen peroxide, upon depletion, significantly increased the decoloring of Congo red. This result shows that this newly developed technique can monitor, predict, and improve the enzymatic decoloring process.

생물학적 수소생산 공정 개발을 위한 오니 슬러지 전처리에 대한 연구 (A Study on the Pretreatment of Activated Sludge for Bio-hydrogen Production Process)

  • 박대원;김동건;김지성;박호일
    • 한국수소및신에너지학회논문집
    • /
    • 제15권3호
    • /
    • pp.187-193
    • /
    • 2004
  • In this study, Anaerobic sewage sludge in a batch reactor operation at $35^\circ{C}$ was used as the seed to investigate the effect of pretreatments of waste activated sludge and to evaluate its hydrogen production potential by anaerobic fermentation. Various pretreatments including physical, chemical and biological means were conducted to utilize for substrate. As a result, SCODcr of alkali and mechanical treatment was 15 and 12 times enhanced, compared with a supernatant of activated sludge. And SCODcr was 2 time increase after re-treatment with biological hydrolysis. Those were shown that sequential hybridized treatment of sludge by chemical & biological methods to conform hydrogen production potential in bath experiments. When buffer solution was added to the activated sludge, hydrogen production potential increased as compare with no addition. Combination of alkali and mechanical treatment was higher in hydrogen production potential than other treatments.

폴리제너레이션 성능 모사 연구 (Performance Analysis of Polygeneration Process)

  • 이시황;보닷윙;이건희;정민영;전락영;오민
    • 한국수소및신에너지학회논문집
    • /
    • 제28권4호
    • /
    • pp.352-360
    • /
    • 2017
  • Polygeneration process is widely used to pursuit high efficiency by sharing electricity, utility, refrigeration and the utilization of product chemicals. In this paper, performance analysis of the 450 MW Class polygeneration process was conducted with various syngas generated from coal and biomass gasifier. WGSR and PSA process were employed for hydrogen production and separation. Process modeling and dynamic simulation was carried out, and the results were compared with NETL report. Net power of the polygeneration process was 439 MW considering power consumption. More than 90% of CO was converted at WGSR and the hydrogen purity of PSA was more than 99.99%.

Photo or Solar Ferrioxalate Disinfection Technology without External Hydrogen Peroxide Supply

  • Cho, Min;Jeong, Joon-Seon;Kim, Jae-Eun;Yoon, Je-Yong
    • Environmental Engineering Research
    • /
    • 제12권5호
    • /
    • pp.238-243
    • /
    • 2007
  • The Fenton reaction, which refers to the reaction between ferrous ions and hydrogen peroxide to produce the OH radical, has not been widely applied to the disinfection of microorganisms despite being economic and environmentally friendly. Cho et al. have previously proposed the neutral photo ferrioxalate system as a solution to the problems posed by the Fenton reaction in acidic conditions, but this system still requires an external hydrogen peroxide supply. In the present study, we developed a simple disinfection technology using the photo or solar ferrioxalate reaction without the need for an external hydrogen peroxide supply. E. coli was employed as the indicating microorganism. The study results demonstrated the effectiveness of the photo ferrioxalate system in inactivating E. coli without any external hydrogen peroxide supply, as long as dissolved oxygen is supplied. Furthermore, the solar ferrioxalate system achieved faster inactivation of E. coli than an artificial light source at similar irradiance.

YlaC is an Extracytoplasmic Function (ECF) Sigma Factor Contributing to Hydrogen Peroxide Resistance in Bacillus subtilis

  • Ryu Han-Bong;Shin In-Ji;Yim Hyung-Soon;Kang Sa-Ouk
    • Journal of Microbiology
    • /
    • 제44권2호
    • /
    • pp.206-216
    • /
    • 2006
  • In this study, we have attempted to characterize the functions of YlaC and YlaD encoded by ylaC and ylaD genes in Bacillus subtilis. The GUS reporter gene, driven by the yla operon promoter, was expressed primarily during the late exponential and early stationary phase, and its expression increased as the result of hydrogen peroxide treatment. Northern and Western blot analyses revealed that the level of ylaC transcripts and YlaC increased as the result of challenge with hydrogen peroxide. A YlaC-overexpressing strain evidenced hydrogen peroxide resistance and a three-fold higher peroxidase activity as compared with a deletion mutant. YlaC-overexpressing and YlaD-disrupted strains evidenced higher sporulation rates than were observed in the YlaC-disrupted and YlaD-overexpressing strains. Analyses of the results of native polyacrylamide gel electrophoresis of recombinant YlaC and YlaD indicated that interaction between YlaC and YlaD was regulated by the redox state of YlaD in vitro. Collectively, the results of this study appear to suggest that YlaC regulated by the YlaD redox state, contribute to oxidative stress resistance in B. subtilis.