DOI QR코드

DOI QR Code

Hydrogen Production in Biological Way as Alternative Energy

생물학적인 방법을 통한 대체 에너지로서의 수소생산

  • Jo, Younghwa (Department of Chemical Engineering, Pohang University of Science and Technology) ;
  • Jo, ByungHoon (Department of School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology) ;
  • Cha, Hyung Joon (Department of Chemical Engineering, Pohang University of Science and Technology)
  • 조영화 (포항공과대학교 화학공학과) ;
  • 조병훈 (포항공과대학교 시스템생명공학부) ;
  • 차형준 (포항공과대학교 화학공학과)
  • Received : 2011.01.10
  • Accepted : 2011.02.07
  • Published : 2011.03.31

Abstract

Development of alternative energy is needed as the fossil is started to be exhausted. This alternative energy should be environmental friendly and renewable. Currently, the alternative energy which gets the most attraction is hydrogen. Hydrogen can be produced by a number of different processes. Among those methods, hydrogen production in biological way is considered as the most environmental friendly method. However, productivity of biological hydrogen production is not good enough to be commercialized yet. Thus, many researchers are trying to improve productivity and yield of biohydrogen production. Here, progress in the diverse developmental approaches on biological hydrogen production, is reviewed.

화석연료가 고갈되어 감에 따라 사람들은 이를 대처할 수 있는 대체에너지를 찾기 시작했다. 이 대체 에너지는 환경 친화적이며 재생 가능해야 된다는 단서가 붙는데 그 중 가장 많은 주목을 받은 것이 수소이다. 현재 수소는 다양한 방법으로 생산되고 있는데 생물학적으로 수소를 생산하는 방법이 가장 환경 친화적인 방법으로 인식되고 있다. 그러나 아직 생물학적으로 수소를 생산하는 방법은 아직 상업화하기엔 경쟁력이 많이 부족하기 때문에 많은 연구자들이 바이오 수소 생산 방법과 그 생산성 및 생산수율을 높이기 위하여 노력하고 있다. 본 고에서는 생물학적 수소생산의 다양한 개발 접근방법들의 진행 추이를 정리하였다.

Keywords

References

  1. Suzuki Y., "On hydrogen as fuel gas", International Journal of Hydrogen Energy, 7, pp. 227-230 (1982). https://doi.org/10.1016/0360-3199(82)90085-4
  2. Das D., Nejat Veziroglu T., "Hydrogen production by biological processes: a survey of literatures", International Journal of Hydrogen Energy, 26, pp. 13-28 (2001). https://doi.org/10.1016/S0360-3199(00)00058-6
  3. Elam CC., Gregoire Padro CE., Sandrock G., Luzzi A Lindblad P., Hagen E-F., "Realizing the hydrogen future: the International Energy Agency's efforts to advance hydrogen energy technologies", International Journal of Hydrogen Energy, 28, pp. 601-607 (2003). https://doi.org/10.1016/S0360-3199(02)00147-7
  4. Meher Kotay S., Das D., "Biohydrogen as a renewable energy resource-Prospects and potentials", International Journal of Hydrogen Energy, 33, pp. 258-263 (2007).
  5. Momirlan M., Veziroglu TN., "Current status of hydrogen energy", Renewable Sustainable Energy Review, 6, pp. 141-179 (2002). https://doi.org/10.1016/S1364-0321(02)00004-7
  6. B. Levin D., Pitt L., Love M., "Biohydrogen production: Prospects and limitation to practical application", International Journal of Hydrogen Energy, 29, pp. 173-185 (2004). https://doi.org/10.1016/S0360-3199(03)00094-6
  7. Das D., Veziroglu T. N., "Advences in biological hydrogen production processes", International Journal of Hydrogen Energy, 33, pp. 6046-6057 (2008). https://doi.org/10.1016/j.ijhydene.2008.07.098
  8. Winkler M., Hemsehemeier A., Gotor C., Melis A., Happe T., "[Fe]-hydrogenase in green algae: photo-fermentation and hydrogen evolution under sulfur deprivation", International Journal of Hydrogen Energy, 27, pp. 1432-1439 (2002).
  9. Ghirardi ML., Zhang L., Lee JW., Flynn T., Seibert M., Greenbaum E., Melis A., "Microalgae: a green source of renewable H2", TrendsinBiotechnology, 18, pp. 506-511 (2000).
  10. Tamagnini P., Axelsson R., Lindberg P., Oxelfelt F., Wunschiers R., Lindblad P,. "Hydrogenases and hydrogen metabolism of cyanobacteria", Microbiology and Molecular Biology Review, 66, pp. 1-20 (2002). https://doi.org/10.1128/MMBR.66.1.1-20.2002
  11. Tsygankove AA., Fedorov AS., Laurinavichene TV., Gogotov IN., Rao KK., Hall DO., "Actual and potential rates of hydrogen photoproduction by continuous culture of the purple non-sulphur bacteria Rhodobacter capsulatus", Applied Microbiology and Biotechnology, 49, pp. 102-107 (1998). https://doi.org/10.1007/s002530051144
  12. Oh Y-K., Seol E-H., Yeol Lee E., Park S., "Fermentative hydrogen production by a new chemolithotrophic bacterium Rhodopseudomonas palustris P4", International Journal of Hydrogen Energy, 27, pp. 1373-1379 (2002). https://doi.org/10.1016/S0360-3199(02)00100-3
  13. Hellenbeck PC., Benemann JR., "Biological hydrogen production: fundamentals and limiting processes", International Journal of Hydrogen Energy, 27, pp. 1185-1193 (2002). https://doi.org/10.1016/S0360-3199(02)00131-3
  14. Hawkes FR., Dindale R., Hawkes DL., HussyI., "Sustainable fermentative biohydrogen: challenges for process optimization", International Journal of Hydrogen Energy, 27, pp. 1339-1347 (2002). https://doi.org/10.1016/S0360-3199(02)00090-3
  15. Momirlan M., Veziroglu TN., "Recent directions of world hydrogen production", Renewable and Sustainable Energy Review, 3, pp. 219-231 (1999). https://doi.org/10.1016/S1364-0321(98)00017-3
  16. Nandi R., Sengupta S., "Microbial production of hydrogen: an overview", Critical Reviews in Microbiology, 24, pp. 61-84 (1998). https://doi.org/10.1080/10408419891294181
  17. Kovac KL., Maroti G., Rakhely G., "A novel approach for biohydrogen production", International Journal of Hydrogen Energy, 31, pp. 1478-1483 (2006). https://doi.org/10.1016/j.ijhydene.2006.06.013
  18. Vignais PM., Magnis JP., Willison JC., "Increasing biohydrogen production by metabolic engineering", International Journal of Hydrogen Energy, 31, pp. 1478-1483 (2006). https://doi.org/10.1016/j.ijhydene.2006.06.013
  19. Yu H., Zhu Z., Hu W., Zhang H., "Hydrogen production rice winery wastewater in an upflow anaerobic reactor by using mixed anaerobic cultures", International Journal of Hydrogen Energy, 27, pp. 1359-1365 (2002). https://doi.org/10.1016/S0360-3199(02)00073-3
  20. Philips EJ., Mitsui A., "Role of light intensity and temperature in the regulation of hydrogen photoproduction by marine cyanobacteria Oscillatoria sp. Miami BG7", Applied and Environmental Microbiology, 45, pp. 1212-1220 (1983).
  21. Nath K., Das D., "Hydrogen production by Rhodobacter sphaeroides strain O.U. 001 using spent media of Enterobacter cloacae strain DM11", Applied Microbiology and Biotechnology, 68, pp. 533-541 (2005). https://doi.org/10.1007/s00253-005-1887-4
  22. Yokoi H., Maki R., Hirose J., Hayashi S., "Microbial production of hydrogen from starch-manufacturing wastes", Biomass and Bioenergy, 22, pp. 389-395 (2002). https://doi.org/10.1016/S0961-9534(02)00014-4
  23. Ntaikou I., Gavala HN., Komaros M., Lyberatos G., "Hydrogen production from sugars and sweet sorghum biomass using Ruminococcus albus", International Journal of Hydrogen Energy, 33, pp. 1154-1163 (2008).