• Title/Summary/Keyword: biological half-lives

Search Result 81, Processing Time 0.022 seconds

Effects of Silkworm Gland Hydrolysate on Albumin-erythropoietin Production in Transgenic Chinese Hamster Ovary Cells (형질전환 Chinese Hamster Ovary 세포에서 Albumin-erythropoietin의 생산시 Silkworm Gland Hydrolysate의 효과)

  • Choi, Min-Ho;Cha, Hyun-Myoung;Kim, Sun-Mi;Choi, Yong-Soo;Kim, Dong-Il
    • KSBB Journal
    • /
    • v.28 no.2
    • /
    • pp.86-91
    • /
    • 2013
  • To date, various strategies have been studied to increase specific productivity in Chinese hamster ovary (CHO) cell cultures. Also, albumin-fusion platform is being applied to other important bioactive peptides with short half-lives. Here, we investigated the effects of silkworm gland hydrolysate (SGH) on the production of albumin-erythropoietin (Alb-EPO) in transgenic CHO cells. The viable cell density of CHO cells was increased by 13% in the medium containing 1 mg/mL SGH higher than in the control medium without SGH. In addition, the production of Alb-EPO was also 1.26- fold enhanced by reducing the early apoptosis of CHO cells. In conclusion, SGH could be used as a useful supplement for the enhancement of recombinant protein production.

Residue Dissipation Patterns of Neonicotinoid Acetamiprid and Thiamethoxam in Swiss Chard for the Harvest Periods under Greenhouse Conditions (시설재배 근대 중 Neonicotinoid계 살충제 Acetamiprid 및 Thiamethoxam의 생산단계 잔류특성)

  • Chang, Hee-Ra;You, Jung-Sun;Do, Jung-Ah
    • Korean Journal of Environmental Agriculture
    • /
    • v.37 no.2
    • /
    • pp.97-103
    • /
    • 2018
  • BACKGROUND: Dissipation of acetamiprid and thiamethoxam in greenhouse grown chard samples was evaluated at 5 intervals including the pre-harvest interval after application. This study was conducted to determine the residue levels, the biological half-lives and dissipation rate of acetamiprid and thiamethoxam in chard under controlled conditions. METHODS AND RESULTS: Acetamiprid and thiamethoxam were applied in accordance with good agricultural practices for chard. Chard samples were collected at 0, 1, 2, 3, 5, 7, 10 and 14 days after application. Quantitaion was performed by HPLC-DAD system with C18 column. Limit of quantification (LOQ) of acetamiprid and thiamethoxam were both 0.02 mg/kg for chard. The recovery of acetamiprid and thiamethoxam were 77.8~107.5% and 94.3~108.6% at two concentration levels. The half-lives of pesticide dissipation in chard for two fields were 11.9 and 8.2 days for acetamiprid and 3.6 and 3.3 days for thiamethoxam respectively. The dissipation rate of acetamiprid and thiamethoxam were estimated according to the statistics method with a 95% confidence. CONCLUSION: Dissipation of acetamiprid and thiamethoxam in chard were determined under greenhouse. The concentration of acetamiprid and thiamethoxam in chards at 0 days after application were below specified by Korean MRL. Dissipation rate constant will be useful to set the pre-harvest residue limit for public health and consumer protection.

Impact of Herbicide Oxadiazon on Microbial Activity and Nitrogen Dynamics in Soil Environment

  • Rahman, Md. Mokhlesur;Song, Kyung-Sik;Rhee, In-Koo;Kim, Jang-Eok
    • Journal of Applied Biological Chemistry
    • /
    • v.48 no.4
    • /
    • pp.187-192
    • /
    • 2005
  • Influence of herbicide oxadiazon on soil microbial activity and nitrogen dynamics was evaluated. Soil samples were treated with oxadiazon at field and tenfold field rates and incubated. Organic amendment was added as an additional substrate for soil microorganisms. Tenfold field rate oxadiazon stimulated substrate-induced respiration (SIR) and dehydrogenase activity (DHA) in amended soil as compared to unamended soil and control treatment. Soil urease activity was not affected by oxadiazon treatment. In both amended and unamended soils, treatment of the herbicide at higher rate had not significant influence on $NH_4$-N and $NO_3$-N concentrations. Higher dose of oxadiazon was degraded in both soils, but dissipation rate in amended soil was higher than unamended soil, with half-lives ($t_{1/2}$) of 23.1 and 138.6 days, respectively. Recommended field rate did not affect microbial activity and nitrogen dynamics in soil ecosystem. Results showed influence of oxadiazon on cycling processes of nitrogen in soil was not significant however its effect on microbial activity was a tendency depending on addition of organic amendment to soil.

Determination of Pre-Harvest Residue Limits of Pesticides Metalaxyl-M and Flusilazole in Oriental Melon (생산단계 참외 중 Metalaxyl-M 및 Flusilazole의 잔류허용기준 설정연구)

  • Kim, Da Som;Kim, Kyung Jin;Kim, Hae Na;Kim, Ji Yoon;Hur, Jang Hyun
    • The Korean Journal of Pesticide Science
    • /
    • v.18 no.1
    • /
    • pp.1-7
    • /
    • 2014
  • The present study was performed to investigate the pre-harvest residue limit (PHRL) of pesticides namely, metalaxyl-M and flusilazole in oriental melon, and to identify the biological half-life and characteristics of their residues. In this study, pesticides were sprayed once as single spray and double spray on oriental melon. The oriental melon samples were collected at 0, 1, 2, 3, 5, 7, 9 and 11 days before harvest and samples were extracted with QuEChERS method. The residues of both the pesticides were quantified using GC/NPD and LC/MS/MS. The limit of detection was found to be 0.02 mg/kg and 0.01 mg/kg and their recoveries were greater than 95% (95.7% ~ 103.2% for metalaxyl-M and 100.2% ~ 106.8% for flusilazole) for both pesticides. The biological half-lives of both metalaxyl-M and flusilazole were 12 days at single and double spray, respectively. The PHRL of metalaxyl-M and flusilazole was found 1.0 mg/kg and 0.3 mg/kg, respectively for 10 days before harvest. The results of the present study shows the residual level of both the pesticides metalaxyl-M and flusilazole in oriental melon were less than their maximum residual limits.

Risk Assessment of Azoxystrobin Residues in Fresh Crown Daisy from Farm to Fork (생산단계에서 소비단계 생식 쑥갓의 azoxystrobin 잔류량에 따른 위해성 평가)

  • Sun-Woo Ban;A-Yeon Oh;Hee-Ra Chang
    • Korean Journal of Environmental Agriculture
    • /
    • v.42 no.2
    • /
    • pp.131-138
    • /
    • 2023
  • The biological half-life and dissipation rate of azoxystrobin in crown daisy were calculated to establish the pre-harvest residue limits (PHRLs). The pesticide residues were calculated after washing with five different processes to propose an effective process in the household and conducted a risk assessment to confirm dietary safety. Azoxystrobin was sprayed according to the critical good agricultural practices (cGAP) in two different field trials, and the samples were harvested 7 times. The limit of quantitation was 0.02 mg/kg, and the mean recoveries of azoxystrobin were within the range of 70~120% with below 20% coefficient variation at the concentration of 0.02 and 0.2 mg/kg . The biological half-lives were 7.4 and 4.7 days, and the dissipation rate constants were 0.0872 and 0.1217 in fields 1 and 2, respectively. The average removal rates were 58.13~78.13% by the different washing processes, and there were significant differences between the washing processes (one-way ANOVA analysis and post-hoc Duncan test, p-value<0.05). The residues of azoxystrobin in crown daisy were safe levels from farm to fork after application with the critical good agricultural practice (cGAP) registered in Korea.

Elucidation of Environment Factors Affecting the Differences in the Half-Life of the Insecticide Cyfluthrin in Soil between Field and Laboratory Tests (포장과 실내실험에서 살충제 Cyfluthrin의 토양 중 반감기 차이에 미치는 환경요인 구명)

  • Lim, Bang-Hyun;Lim, Yo-Sup;Choi, Yong-Hwa;Han, Seong-Soo
    • Applied Biological Chemistry
    • /
    • v.43 no.4
    • /
    • pp.291-297
    • /
    • 2000
  • This study was conducted to find out the environmental factors affecting the differences in the half-life of the insecticide cyfluthrin in soil between field and laboratory tests carried out in 1998. Degradation and leaching of cyfluthrin in soil were examined under various environmental conditions that were considered to affect the residuality. Cyfluthrin was degraded 1.9 times faster in non-sterilized soil than in sterilized soil and 1.2 times at $25^{\circ}C$ than at $15^{\circ}C$. The half-lives of cyfluthrin were 61.4 days under the dark condition and 4.5 days under sunlight, and those were 11.8 days under the open condition and 23.8 days under the closed condition. The half-lives of the authentic compound and the commercial product of cyfluthrin were 15 and 1 day in the field test and 26 and 3 days in the laboratory test, respectively. Cyfluthrin was rapidly degraded with an increase in soil moisture content and decomposed faster in the alkaline solution of pH 12 than in the acidic solution of pH 3, but the half-life of cyfluthrin did not make any difference between pH 6.4 of the field test soil and pH 5.6 of the laboratory test soil. Cyfluthrin was immobile in soil from the results that $81{\sim}94%$ of the initial amount remained in the $0{\sim}2\;cm$ layer of the soil column regardless of the amount and time of rainfall after the chemical treatments. From viewing the abovementioned results, soil moisture content, sunlight and formulation type affected greatly soil microbes and volatilization affected slightly, and temperature, pH and rainfall did not affect the big difference in the half-life of cyfluthrin in soil between the field and laboratory tests in the year of 1998.

  • PDF

Residual Characteristics of Insecticides Used for Oriental Tobacco Budworm Control of Paprika (파프리카 재배기간 중 담배나방 방제에 사용되는 살충제의 잔류특성)

  • Lee, Dong Yeol;Kim, Yeong Jin;Kim, Sang Gon;Kang, Kyu Young
    • Korean Journal of Environmental Agriculture
    • /
    • v.32 no.1
    • /
    • pp.84-93
    • /
    • 2013
  • BACKGROUND: This study was carried out to investigate the residual characteristics of insecticides used for Oriental Tobacco Budworm control and to establish the recommended pre-harvest residue limit leading to contribution in safety of paprika production. METHODS AND RESULTS: The recommended Pre-Harvest Residue Limits (PHRLs) of insecticides during cultivation of paprika were calculated from residue analyses of insecticides in fruits 1, 3, 5, 7, 10, 12, 15, 18 and 21 days after treatment. Paprika samples were extracted with QuEChERS method and cleaned-up with amino propyl SPE cartridge and PSA, and insecticide residues were analyzed either by HPLC/DAD or GLC/ECD. The limits of detection were 0.01 mg/kg for 5 insecticides. Average recoveries were $81.3{\pm}1.62%$-$98.3{\pm}1.58%$ of 5 insecticides at fortification levels of 0.1 and 0.5 mg/kg. The biological half-lives of the insecticides were 8.5 days for bifenthrin, 11.8 days for chlorantraniliprole, 16.8 days for chlorfenapyr, 7.1 days for lamda-cyhalothrin and 31.3 days for methoxyfenozide at recommended dosage, respectively. CONCLUSION(S): The pre-harvest residue limits for 10 days before harvest were recommended 1.05 mg/kg, 1.41 mg/kg, 0.93 mg/kg, 2.06 mg/kg and 1.08 mg/kg as bifenthrin, chlorantraniliprole, chlorfenapyr, lamda-cyhalothrin and methoxyfenozide, respectively. This study can provide good practical measures to produce safe paprika fruit by prevention of products from exceeding of MRLs at pre-harvest stage.

Residue Dissipation Patterns of Indoxacarb and Pymetrozine in Broccoli under Greenhouse Conditions (시설재배 브로콜리 중 Indoxacarb 및 Pymetrozine의 잔류 소실특성)

  • Yang, Seung-Hyun;Lee, Jae-In;Choi, Hoon
    • Korean Journal of Environmental Agriculture
    • /
    • v.39 no.1
    • /
    • pp.75-82
    • /
    • 2020
  • BACKGROUND: This study was carried out to establish pre-harvest residue limits (PHRLs) of indoxacarb and pymetrozine in broccoli under greenhouse conditions, based on dissipation patterns and biological half-lives of pesticides during 10 days after application. METHODS AND RESULTS: The field studies were conducted in two different greenhouse, located in Chungju-si (Field 1) and Gunsan-si (Field 2). Samples were collected at 0, 1, 2, 3, 5, 7 and 10 days after spraying pesticide suspension. The analytical methods for indoxacarb and pymetrozine using HPLC-DAD were validated by recoveries ranging of 94.3-105.4% and 81.8-96.0%, respectively, and MLOQ (Method Limit of Quantification) of 0.05 mg/kg. Biological half-lives of indoxacarb and pymetrozine were 2.9 and 3.2-3.8 days in broccoli, respectively. The lower 95% confidence intervals of dissipation rate constant of indoxacarb were determined as 0.1508 (Field 1) and 0.2017 (Field 2), whereas those of pymetrozine were calculated as 0.1489 (Field 1) and 0.1577 (Field 2). CONCLUSION: The significant differences were not observed between the dissipation rates of indoxacarb and pymetrozine in broccoli. The major factor affecting residue dissipation was the dilution effect by fast growth. The PHRLs for 10 days prior to harvest were recommended as 30.06 (Field 1) and 18.07 (Field 2) mg/kg for indoxacarb, and 4.84 (Field 1) and 4.43 (Field 2) mg/kg for pymetrozine, respectively.

Removal Characteristics of Tetracycline, Oxytetracycline, Trimethoprime and Caffeine in Biological Activated Carbon Process (생물활성탄 공정에서 Tetracycline, Oxytetracycline, Trimethoprime 및 Caffeine 제거특성)

  • Son, Hee-Jong;Hwang, Young-Do;Yoo, Pyung-Jong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.3
    • /
    • pp.186-192
    • /
    • 2009
  • In this study, The effects of three different activated carbon materials (each coal, coconut and wood based activated carbons), empty bed contact time (EBCT) and water temperature on the removal of pharmaceutical 4 species (oxytetracycline, tetracycline, trimethoprime and caffeine) in BAC filters were investigated. Experiments were conducted at three water temperature (5, 15 and $25^{\circ}C$) and four EBCTs (5, 10, 15 and 20 min). The results indicated that coal based BAC retained more attached bacterial biomass on the surface of the activated carbon than the other BAC, increasing EBCT or increasing water temperature increased the pharmaceutical 4 species removal in BAC columns. In the coal-based BAC columns, removal efficiencies of oxytetracycline and tetracycline were 87~100% and removal efficiencies of trimethoprime and caffeine were 72~99% for EBCT 5~20 min at $25^{\circ}C$. The kinetic analysis suggested a firstorder reaction model for pharmaceutical 4 species removal at various water temperatures (5~$25^{\circ}C$). The pseudo-first-order reaction rate constants and half-lives were also calculated for pharmaceutical 4 species removal at 5~$25^{\circ}C$. The reaction rate and half-lives of pharmaceutical 4 species ranging from 0.0360~0.3954 $min^{-1}$ and 1.75 to 19.25 min various water temperatures and EBCTs, could be used to assist water utilities in designing and operating BAC filters.

Establishment of Pre-Harvest Residue Limit (PHRL) of Emamectin benzoate during Cultivation of Amaranth (생산단계 비름 중 Emamectin benzoate의 잔류허용기준 설정)

  • Kim, Kyung Jin;Kim, Da Som;Heo, Seong Jin;Ham, Hun Ju;Hur, Jang Hyun
    • The Korean Journal of Pesticide Science
    • /
    • v.17 no.2
    • /
    • pp.77-83
    • /
    • 2013
  • This study was performed to investigate pre-harvest residue limit (PHRL) in amaranth, to estimate biological half-life of emamectin benzoate and identify the characteristics of the residue. Pesticides of standard and double appplication rate, were sprayed once on amaranth at 0, 1, 2, 3, 5, 7, 10, 14 days before harvest. Amaranth sample was extracted with acetonitrile and partitioned with dichloromethane, and pesticide residues were determined with LC/MS/MS. The limit of detection of emamectin benzoate was 0.01 mg/kg. Recoveries of emamectin benzoate ($B_{1a}$, $B_{1b}$) at two fortification levels of 0.1 and 0.5 mg/kg, $B_{1a}$ were $93.3{\pm}0.7%$ and $93.2{\pm}7.7%$, $B_{1b}$ were $106.6{\pm}1.9%$ and $80.5{\pm}6.6%$, respectively. The biological half-lives of emamectin benzoate were about 2.0 days at standard application rate and 1.7 days at double application rate, respectively. The PHRL of emamectin benzoate were recommended as 0.84 mg/kg for 10 days before harvest.