• Title/Summary/Keyword: biological control agent

Search Result 384, Processing Time 0.023 seconds

Suppression of Meloidogyne arenaria by different treatments of Pasteuria penetrans (Pasteuria penetrans의 처리방법에 따른 땅콩뿌리혹선충 (Meloidogyne arenaria) 방제효과)

  • Zhu, Yong-Zhe;Park, Dong-Sik;Cho, Myoung-Rae;Hur, Jang-Hyun;Lim, Chun-Keun
    • The Korean Journal of Pesticide Science
    • /
    • v.9 no.4
    • /
    • pp.437-441
    • /
    • 2005
  • This study was investigated to compare the suppression of Meloidogyne arenaria by different treatments of Pasteuria penetrans which is known for biological control agent against Meloidogyne spp.. In order to select proper number of P. penetrans showing good suppression effect, P. penetrans were mixed with M, arenaria for attachment using three different concentration such as $3{\times}10^4$, $3{\times}10^5$ and $3{\times}10^6$ endospores/5 g medium, followed by treating them onto the roots of tomato. After 14 weeks incubation, P. penetrans at $3{\times}10^6$ endospores showed highest activity against the formation of gall caused by M, arenaria. At a dose of $3{\times}10^5$ endospores/5 g medium, P. penetrans was treated into soil either mixing with soil or spray onto soil surface for comparing of suppressive efficacy. When the antagonistic bacterium was treated by the former method, it suppressed more effectively Using P. penetrans at $3{\times}10^6$ endospores and mixing with soil method, suppression was compared among P. penetrans, $PASTORIA^{(R)}$(Japan) and $Fosthiazate^{(R)}$(Korea). P. penetrans was more potent than $PASTORIA^{(R)}$(Japan) and as similar as $Fosthiazate^{(R)}$(Korea). Therefore, these results suggested that P. penetrans can be used for controling of M. arenaria as biological control agent. Furthermore, thess results can be provided to develop environmentally-friendly nematicide.

First Report of Feltiella acarisuga Vallot (Diptera: Cecidomyiidae) in Korea (한국미기록종 Feltiella acarisuga Vallot (응애혹파리: 신칭) 보고)

  • Lee, Heung-Su;Chung, Bu-Keun;Kim, Kyu-Jin
    • Korean journal of applied entomology
    • /
    • v.43 no.3 s.136
    • /
    • pp.185-188
    • /
    • 2004
  • Feltiella acarisuga Vallot, a predatory gall midge preying upon spider mites, is reported for the first time in Korea. It was found in a greenhouse on Glycine soja Sieb. et Zucc. heavily infested with Tetranychus urticae in Sachon, Kyongnam Province. This species is very useful biological control agent for spider mites on greenhouse vegetable crops. Brief morphological characteristics are described.

Suppression of Bacterial Wilt with Bacillus subtilis SKU48-2 Strain (Bacillus subtilis SKU48-2에 의한 풋마름병 발병 억제)

  • Kim, Ji-Tae;Kim, Shin-Duk
    • Microbiology and Biotechnology Letters
    • /
    • v.36 no.2
    • /
    • pp.115-120
    • /
    • 2008
  • Bacterial populations from the rhizosphere were obtained and the efficacy of the bacterial wilt suppression, root colonizing ability and resistance to three kinds of chemical pesticides were assayed. According to these results, SKU48-2 was selected as a potential biological agent to control the bacterial wilt caused by Ralstonia solanacearum. SKU48-2 strain at $10^8CFU/ml$ inoculum was able to suppress the bacterial wilt up to 60% in greenhouse trials. Also, the resistance of SKU48-2 to chemical pesticides make possible to use in combination with chemical pesticides for the control of bacterial wilt. Three different powder formulations of SKU48-2 were developed. The shelf-life of powder formulations was effective up to 6 months of storage. Unformulated bacterial suspension could not be stored for 2 weeks, at which time cell viability was completely lost. According to 16S rDNA sequence data, the SKU48-2 stain was identified as Bacillus subtilis.

Biological Control of Root-Lesion Nematodes(Pratylenchus spp.) by Nematode-Trapping Fungi (선충 포식성 곰팡이를 이용한 뿌리썩이선충(Pratylenchus spp.)의 생물학적 방제)

  • 손흥대;김성렬;최광호;추호렬
    • Journal of Life Science
    • /
    • v.10 no.4
    • /
    • pp.403-407
    • /
    • 2000
  • For the biological control of the root-lesion nematodes, Pratylenchus spp., which damage directly and indirectly to the leaf perilla, the nematical effect of three nematode-trapping fungi, Arthrobotrys oligospora, A. conoides and A. dactyloides was evaluated in the field. Three species of Arthrobotrys were isolated from the culture soil of leaf perilla in 1998 and were observed the capture of the root-lesion nematodes, Pratylenchus spp. by adhesive hyphal networks or constricting rings on agar. At 40 days after treatment, the plant-parasitic nematodes and root-lesion nematode populations were approximately increased 3.5 fold in untreated control plot, while the nematode population in fungi treatment plots was similar to initial population. In the A. dactyloides plot, however, the population of plant-parasitic nematodes and Pratylenchus spp. was approximately reduced 65% and 53%, respectively. Thus, the fungus A. dachyloides should provide as biological agent for the control of Pratylenchus spp.

  • PDF

Biological Control of Fusarium oxysporum, the Causal Agent of Fusarium Basal Rot in Onion by Bacillus spp.

  • Jong-Hwan Shin;Ha-Kyoung Lee;Seong-Chan Lee;You-Kyoung Han
    • The Plant Pathology Journal
    • /
    • v.39 no.6
    • /
    • pp.600-613
    • /
    • 2023
  • Fusarium oxysporum is the main pathogen causing Fusarium basal rot in onion (Allium cepa L.), which incurs significant yield losses before and after harvest. Among management strategies, biological control is an environmentally safe and sustainable alternative to chemical control. In this study, we isolated and screened bacteria for antifungal activity against the basal rot pathogen F. oxysporum. Isolates 23-045, 23-046, 23-052, 23-055, and 23-056 significantly inhibited F. oxysporum mycelial growth and conidial germination. Isolates 23-045, 23-046, 23-052, and 23-056 suppressed the development of Fusarium basal rot in both onion seedlings and bulbs in pot and spray inoculation assays. Isolate 23-055 was effective in onion seedlings but exhibited weak inhibitory effect on onion bulbs. Based on analyses of the 16S rRNA and rpoB gene sequences together with morphological analysis, isolates 23-045, 23-046, 23-052, and 23-055 were identified as Bacillus thuringiensis, and isolate 23-056 as Bacillus toyonensis. All five bacterial isolates exhibited cellulolytic, proteolytic, and phosphate-solubilizing activity, which may contribute to their antagonistic activity against onion basal rot disease. Taken together B. thuringiensis 23-045, 23-046, 23-052, and 23-055 and B. toyonensis 23-056 have potential for the biological control of Fusarium basal rot in onion.

Leaf Blight Caused byCurvularia intermedia on the Invasive Weed Lactuca serriola in Korea

  • Jin A Lee;Seon Young Lee;Young-Joon Choi
    • The Korean Journal of Mycology
    • /
    • v.51 no.3
    • /
    • pp.245-249
    • /
    • 2023
  • Prickly lettuce (Lactuca serriola), an invasive annual plant, poses a significant threat to the agricultural systems of many countries, including Korea. In 2020, leaf blight symptoms were observed in the prickly lettuce populations of various farms across Korea. Detailed morphological and molecular sequence analyses revealed that the disease was caused by the fungus, Curvularia intermedia. A pathogenicity test confirmed that the fungus can cause the same symptoms in healthy prickly lettuce, thereby fulfilling Koch's postulates. To the best of our knowledge, this is the first report of C. intermedia causing leaf blight on L. serriola in Korea, suggesting its potential as a biocontrol agent for this weed. However, further investigations are necessary to determine its ecological impact to prevent any non-target effects.

Antioxidant Effect of some Chelating Agents on Soybean Oil (식용대두유에 대한 Chelating agent의 항산화 효과)

  • Cho, Mi-Za;Hahn, Tae-Sik;Kwon, Tae-Bong;Oh, Sung-Ki
    • Applied Biological Chemistry
    • /
    • v.32 no.1
    • /
    • pp.30-36
    • /
    • 1989
  • Some chelating agents are evaluated as an antioxidant for the autoxidation of soybean oil. Soybean oil is autoxidized under a mild condition (the flow rate of 67ml $O_{2}/min$ and $50^{\circ}C$). The antioxidant effect is measured by active oxygen method, and the spectral change of autoxidized soybean oil examined. The antioxidant effect of chelating agents is increased in order of diphenic acid, naphthoquinone, pyromellitic acid, quinolinic acid and naphthalic acid, and particularly the effect is low in diphenic acid and naphthoquinone. It is found that the effect is more clearly demonstrated by NMR rather than IR and UV and that the effect is dependent on the functional group and geometric molecular structure of chelating agents.

  • PDF

A Multiagent System for Workflow-Based Bioinformatics Tool Integration

  • Sohn, Bong-Ki;Lee, Keon-Myung;Kim, Hak-Joon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.3 no.2
    • /
    • pp.133-137
    • /
    • 2003
  • Various bioinformatics tools for biological data processing have been developed and most of them are available in public. Most bioinformatics works are carried out by a composite application of those tools. Several integration approaches have been proposed for easy use of the tools. This paper proposes a new multi agent system to integrate bioinformatics tools in the perspective of workflow since the composite applications of tools can be regarded as workflows. For the easy integration, the proposed system employs wrapper agents for existing tools, uses XML-based messages in the inter-agent communication, and agents are supposed to extract necessary information from the received messages. This allows new tools to be easily added on the integration framework. The proposed method allows various control structures in workflow definition and provides the progress monitoring capability of the on-going workflows. In particular, agents in this system have the rule-based architecture which allows the defined rule set to be a special role agent. This feature provides fast and flexible agent development to aid in managing the complexity of bioinformatics application. This system has been partially implemented and has been proven to be a viable implementation for workflow-based bioinformatics tool integration.

Mitigation of Membrane Biofouling in MBR Using a Cellulolytic Bacterium, Undibacterium sp. DM-1, Isolated from Activated Sludge

  • Nahm, Chang Hyun;Lee, Seonki;Lee, Sang Hyun;Lee, Kibaek;Lee, Jaewoo;Kwon, Hyeokpil;Choo, Kwang-Ho;Lee, Jung-Kee;Jang, Jae Young;Lee, Chung-Hak;Park, Pyung-Kyu
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.3
    • /
    • pp.573-583
    • /
    • 2017
  • Biofilm formation on the membrane surface results in the loss of permeability in membrane bioreactors (MBRs) for wastewater treatment. Studies have revealed that cellulose is not only produced by a number of bacterial species but also plays a key role during formation of their biofilm. Hence, in this study, cellulase was introduced to a MBR as a cellulose-induced biofilm control strategy. For practical application of cellulase to MBR, a cellulolytic (i.e., cellulase-producing) bacterium, Undibacterium sp. DM-1, was isolated from a lab-scale MBR for wastewater treatment. Prior to its application to MBR, it was confirmed that the cell-free supernatant of DM-1 was capable of inhibiting biofilm formation and of detaching the mature biofilm of activated sludge and cellulose-producing bacteria. This suggested that cellulase could be an effective anti-biofouling agent for MBRs used in wastewater treatment. Undibacterium sp. DM-1-entrapping beads (i.e., cellulolytic-beads) were applied to a continuous MBR to mitigate membrane biofouling 2.2-fold, compared with an MBR with vacant-beads as a control. Subsequent analysis of the cellulose content in the biofilm formed on the membrane surface revealed that this mitigation was associated with an approximately 30% reduction in cellulose by cellulolytic-beads in MBR.

Effect of Producing Different Phenazines on Bacterial Fitness and Biological Control in Pseudomonas chlororaphis 30-84

  • Yu, Jun Myoung;Wang, Dongping;Pierson, Leland S. III;Pierson, Elizabeth A.
    • The Plant Pathology Journal
    • /
    • v.34 no.1
    • /
    • pp.44-58
    • /
    • 2018
  • Pseudomonas chlororaphis 30-84 is a biological control agent selected for its ability to suppress diseases caused by fungal pathogens. P. chlororaphis 30-84 produces three phenazines: phenazine-1-carboxylic acid (PCA), 2-hydroxy-phenazine-1-carboxylic acid (2OHPCA) and a small amount of 2-hydroxy-phenazine (2OHPHZ), and these are required for fungal pathogen inhibition and wheat rhizosphere competence. The two, 2-hydroxy derivatives are produced from PCA via the activity of a phenazine-modifying enzyme encoded by phzO. In addition to the seven biosynthetic genes responsible for the production of PCA, many other Pseudomonas strains possess one or more modifying genes, which encode enzymes that act independently or together to convert PCA into other phenazine derivatives. In order to understand the fitness effects of producing different phenazines, we constructed isogenic derivatives of P. chlororaphis 30-84 that differed only in the type of phenazines produced. Altering the type of phenazines produced by P. chlororaphis 30-84 enhanced the spectrum of fungal pathogens inhibited and altered the degree of take-all disease suppression. These strains also differed in their ability to promote extracellular DNA release, which may contribute to the observed differences in the amount of biofilm produced. All derivatives were equally important for survival over repeated plant/harvest cycles, indicating that the type of phenazines produced is less important for persistence in the wheat rhizosphere than whether or not cells produce phenazines. These findings provide a better understanding of the effects of different phenazines on functions important for biological control activity with implications for applications that rely on introduced or native phenazine producing populations.