• Title/Summary/Keyword: bioinoculants

Search Result 10, Processing Time 0.027 seconds

Zinc-Solubilizing Streptomyces spp. as Bioinoculants for Promoting the Growth of Soybean (Glycine max (L.) Merrill)

  • Chanwit Suriyachadkun;Orawan Chunhachart;Moltira Srithaworn;Rungnapa Tangchitcharoenkhul;Janpen Tangjitjareonkun
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.11
    • /
    • pp.1435-1446
    • /
    • 2022
  • Zinc-solubilizing bacteria can convert the insoluble form of zinc into soluble forms available to plants. This study was conducted to isolate and screen zinc-solubilizing actinobacteria from rhizosphere soils and to assess their effect on vegetable soybean growth. In total, 200 actinobacteria strains belonging to 10 genera were isolated from rhizosphere soil samples. Among these isolates, four showed zinc solubilization with solubilizing index values ranging from 3.11 to 3.78 on Bunt and Rovira agar supplemented with 0.1% zinc oxide. For the quantitative assay, in broth culture, strains CME34 and EX51 solubilized maximum available zinc contents of 529.71 and 243.58 ㎍/ml. Furthermore, indole-3-acetic acid (IAA) and ammonia were produced by these two strains, the strain CME34 produced the highest amount of IAA 4.62 ㎍/ml and the strain EX51 produced the highest amount of ammonia 361.04 ㎍/ml. In addition, the phosphate-solubilizing abilities in Pikovskaya's medium of CME34 and EX51 were 64.67 and 115.67 ㎍/ml. Based on morphological and biochemical characterization and 16S rDNA sequencing, the strains CME34 and EX51 were closely related to the genus Streptomyces. In a greenhouse experiment, single-strain inoculation of Streptomyces sp. CME34 or EX51 significantly increased the shoot length, root length, plant dry weight, number of pods per plant and number of seeds per plant of vegetable soybean plants compared to the uninoculated control. These findings facilitated the conclusion that the two Streptomyces strains have potential as zinc solubilizers and can be suggested as bioinoculants to promote the growth and yield of soybean.

Effects of Co-Cultures, Containing N-Fixer and P-Solubilizer, on the Growth and Yield of Pearl Millet (Pennisetum glaucum (L.) R. Br.) and Blackgram (Vigna mungo L.)

  • POONGUZHALI POONGUZHALI;SELVARAJ SELVARAJ;MADHAIYAN MUNUSAMY;THANGARAJU MUTHU;RYU JEOUNGHYUN;CHUNG KEUNYOOK;SA TONGMIN
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.4
    • /
    • pp.903-908
    • /
    • 2005
  • Inoculation of the carrier-based mixed bioinoculants af N-fixer (Azospirillum lipoferum strain Az204/Rhizobium strain BMBS P47) and phosphate-solubilizing bacterium (Bacillus megaterium var phosphaticum strain Pb 1) promoted growth and yield of pearl millet and blackgram under pot-culture conditions. The mixed inoculant of Az204 and Pb 1 enhanced germination, seedling vigor, plant height, and seed weight, and resulted in $6\%$ increase in grain yield of pearl millet. Likewise, the mixed inoculant of BMBS P47 and Pb1 increased growth, nodulation, and yield in blackgram. The rhizosphere soil enzyme activities, including nitrogenase, urease, and phosphatase, in both pearl millet and blackgram were significantly increased by the inoculation of the mixed inoculant, compared to that of the individual inoculants. The results clearly indicate the beneficial effect of co-culturing the N-fixer and P-solubilizer in inoculants production.

Effect of Chemical Fertilizer-adaptive Variants, Pseudomonas aeruginosa GRC2 and Azotobacter chroococcum AC1, on Macrophomina phaseolina Causing Charcoal Rot of Brassica juncea

  • Joshi, Kishore Kumar;Kumar, Varun;Dubey, Ramesh Chand;Maheshwari, Dinesh Kumar;Bajpai, Vivek K.;Kang, Sun-Chul
    • Korean Journal of Environmental Agriculture
    • /
    • v.25 no.3
    • /
    • pp.228-235
    • /
    • 2006
  • Pseudomonas aeruginosa $GRC_2$, siderophore-producing strain, inhibited growth of Macrophomina phaseolina in vitro and reduced charcoal rot in seeds of Brassica juncea in field when coated with adaptive strains. P. aeruginosa $GRC_2$ and Azotobacter chroococcum $AC_1$ produced indole-3-acetic acid and solubilized insoluble phosphate. A. chroococcum $AC_1$ fixed nitrogen asymbiotically. Urea and diammonium phosphateadaptive variant strains of P. aeruginosa and A. chroococcum strongly inhibited M. phaseolina in comparison to parental strains. Bacterization of seeds induced seed germination, seedling growth, and enhanced yield of B. juncea by 10.87% as compared to full doses of urea and diammonium phosphate. Both adaptive strains of chemical fertilizers aggressively colonized roots, showing effectiveness to growth and developments of B. juncea.

Effect of Brevibacterium iodinum RS16 and Methylobacterium oryzae CBMB20 Inoculation on Seed Germination and Early Growth of Maize and Sorghum-sudangrass hybrid Seedling under Different Salinity Levels

  • Kim, Ki-Yoon;Hwang, Seong-Woong;Saravanan, Venkatakrishnan Sivaraj;Sa, Tong-Min
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.1
    • /
    • pp.51-58
    • /
    • 2012
  • Salinity is one of the most relevant abiotic factor limiting crop yield and its net primary productivity. In addition, salinity induces an increased stress ethylene synthesis in plants which, in turn, exacerbate the responses to the stressor. Bacterial single or co-inoculation effect was tested using previously characterized plant growth promoting (PGP) bacteria Brevibacterium iodinum RS16 and Methylobacterium oryzae CBMB20 on maize and sorghum-sudan grass hybrid under different concentrations of NaCl. Non-inoculated maize and sorghum-sudangrass hybrid showed 33.4% and 20.0% reduction in seed germination under highest NaCl (150 mM) level tested. However, under the same NaCl concentration, co-inoculation with B. iodinum RS16 and M. oryzae CBMB20 PGP strains increased the seed germination in maize (16.7%) and sorghum-sudangrass hybrid (4.4%). In Gnotobiotic growth pouch experiments conducted for maize and sorghum-sudangrass hybrid, co-inoculation of PGP B. iodinum RS16 and M. oryzae CBMB20 mitigated the salinity stress and promoted root length by 22.9% and 29.7%, respectively. Thus the results of this study could help in development of potential bioinoculants that may be suitable for crop production under saline conditions.

Effect of Transgenic Rhizobacteria Overexpressing Citrobacter braakii appA on Phytate-P Availability to Mung Bean Plants

  • Patel, Kuldeep J.;Vig, Saurabh;Nareshkumar, G.;Archana, G.
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.11
    • /
    • pp.1491-1499
    • /
    • 2010
  • Rhizosphere microorganisms possessing phytase activity are considered important for rendering phytate-phosphorus (P) available to plants. In the present study, the Citrobacter braakii phytase gene (appA) was overexpressed in rhizobacteria possessing plant growth promoting (PGP) traits, for increasing their potential as bioinoculants. AppA was cloned under the lac promoter in the broadhost-range expression vector pBBR1MCS-2. Transformation of the recombinant construct pCBappA resulted in high constitutive phytase activity in all of the eight rhizobacterial strains belonging to genera Pantoea, Citrobacter, Enterobacter, Pseudomonas (two strains), Rhizobium (two strains), and Ensifer that were studied. Transgenic rhizobacterial strains were found to display varying levels of phytase activity, ranging from 10-folds to 538-folds higher than the corresponding control strains. The transgenic derivative of Pseudomonas fluorescens CHA0, a well-characterized plant growth promoting rhizobacterium, showed the highest expression of phytase (~8 U/mg) activity in crude extracts. Although all transformants showed high phytase activity, rhizobacteria having the ability to secrete organic acid showed significantly higher release of P from Ca-phytate in buffered minimal media. AppA overexpressing rhizobacteria showed increased P content, and dry weight (shoot) or shoot/ root ratio of mung bean (Vigna radiata) plants, to different extents, when grown in semisolid agar (SSA) medium containing Na-phytate or Ca-phytate as the P sources. This is the first report of the overexpression of phytase in rhizobacterial strains and its exploitation for plant growth enhancement.

Changes of Biological and Chemical Properties during Composting of Livestock Manure with Isolated Native Microbe (토착미생물별 가축분 퇴비화 과정중 생물화학적 특성 변화)

  • Han, Hyo-Shim;Lee, Kyung-Dong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.1126-1135
    • /
    • 2012
  • In order to produce high-quality fermenting composts, bacteria strains with high activities of extracellular enzymes (cellulase, chitinase, amylase, protease and lipase) were isolated from the soils in 6 provinces of Korea, and characterized by 16S rRNA gene sequence analysis and properties. The selected 7 stains inoculated to livestock manure for 2' fermenting time, and experimental treatment divided into 3 groups, B1, B2 and B3, according to microbial activity and enzyme type. Our results showed that microbe applications (B1, B2 and B3) can increase (p<0.05) both rhizomes (17-38%) and enzyme activities (50-81%) in compost after fermenting time, respectively, compared to non-microbe treatment (control). The microbe application also decreased significantly (p<0.05) the $NH_3$ and $H_2S$ gas contents 13.4 and 27.3% compared with control, and the Propionic acid and Butyric acid gas contents 14.5 and 19.6%, respectively, as compared to the control. The microbial degradation rate (%) of pesticides and heavy metals increased significantly (p<0.05) after fermenting time, respectively, as compared to the control. Especially, microbe applications were more effective in total rhizomes yields and bioactivities than non-microbe treatment. Thus the results of this study could help in development of potential bioinoculants and composting techniques that maybe suitable for crop production, and protectable for earth environment under various conditions.

Pink Pigmented Facultative Methylotrophic Bacteria(PPFMs): Introduction to Current Concepts (분홍색 색소를 형성하는 methylotrophic acteria(PPFMs): 최근 경향소개)

  • Munusamy, Madhaiyan;Sa, Tongmin;Kim, Jai-Joung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.4
    • /
    • pp.266-287
    • /
    • 2004
  • The non infecting, plant associated bacteria have attracted increased attention for stimulating plant growth and as environmental friendly plant protecting agents. Pink-pigmented facultatively methylotrophic bacteria (PPFMs), classified as Methylobacterium spp., are persistent colonizers of plant leaf surfaces. As the leaves of most or all plants harbor PPFMs that utilize leaf methanol as their sole source of carbon and energy, which is a specific attribute of the genus Methylobacterium. Although they are not well known, these bacteria are co-evolved, interacting partners in plant metabolism. This claim is supported, for example, by the following observations: (1) PPFMs are seed-transmitted, (2) PPFMs are frequently found in putatively axenic cell cultures, (3) Low numbers of seed-borne PPFMs correlate with low germinability, (4) Plants with reduced numbers of PPFM show elevated shoot/root ratios, (5) Foliar application of PPFMs to soybean during pod fill enhances seed set and yield, (6) Liverwort tissue in culture requires PPFM-produced vitamin B12 for growth, (7) treated plants to suppress or decrease disease incidence of sheath blight caused by Rhizoctonia solani in rice, and (8) the PPFM inoculation induced number of stomata, chlorophyll concentration and malic acid content, they led to increased photosynthetic activity. Methylobacterium spp. are bacterial symbionts of plants, shown previously to participate in plant metabolism by consuming plant waste products and producing metabolites useful to the plant. There are reports that inform about the beneficial interactions between this group of bacteria and plants. Screening of such kind of bacteria having immense plant growth promoting activities like nitrogen fixation, phytohormone production, alleviating water stress to the plants can be successfully isolated and characterized and integration of such kind of organism in crop production will lead to increased productivity.

Beneficial Roles of Azospirillum as Potential Bioinoculant for Eco-Friendly Agriculture (친환경농업을 위한 유용미생물 Azospirillum의 효율적 이용)

  • Gadagi, Ravi;Park, Myoung-Su;Lee, Hyoung-Seok;Seshadri, Sundaram;Chung, Jong-Bae;Sa, Tong-Min
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.36 no.5
    • /
    • pp.290-303
    • /
    • 2003
  • Modern agriculture has been heavily dependent on chemical fertilizers to meet the food demands of ever increasing population. Progressive depletion of major plant nutrients in soil due to intensive cultivation practices has also necessitated the use of higher dose of chemical fertilizers particularly in soils where the organic matter content is very low. Indiscriminate use of chemical fertilizers and pressure on agriculturists to enhance per area crop yields has led to fast depletion of fossil fuel resources with concomitant increase in the prices of chemical fertilizers and also led to environmental pollution. Hence, the current trend throughout the world is to explore the possibility of using alternate nutrient sources or increasing the efficiency of chemical fertilizers by supplementing them with organic fertilizers and bioinoculants comprising largely microbes like, bacteria, fungi, algae etc to enhance nitrogen and phosphates in the soil thus creating a sustainable agricultural environment. Among the different microbial inoculants or biofertilizers, Azospirillum could be a potential candidate due to its non specific host root colonization. It had the capability to fix $N_2$ in wide pH regimes and even in presence of combined nitrogen. Azospirillum inoculation can increase the crop yield to 10-25% and substitute 25% of recommended doses of nitrogenous fertilizers. Apart from nitrogen fixation, Azospirillum is also involved in the root improvement, the activity which was attributed to an increase in the rate of water and mineral uptake by roots. The ability of Azospirillum to produce phytohormones was reported to enhance the root respiration rate, metabolism and root proliferation. They have also been reported to produce polyhydroxybutyrate, that can be used as a biodegradable thermosplastic. A lot of studies have addressed improvements in enhancing its efficiency to fix nitrogen fixation and hormone production.

Degradation of Poultry Feathers by Bacillus amyloliquefaciens Y10 With Plant Growth-promoting Activity and Biological Activity of Feather Hydrolyzates (식물 성장 촉진 활성을 가진 Bacillus amyloliquefaciens Y10에 의한 가금 우모의 분해 및 생산된 우모 분해산물의 생리활성)

  • Yedam Kim;Young Seok Lee;Youngsuk Kim;Jinmyeong Song;Yeongbeen Bak;Gyulim Park;O-Mi Lee;Hong-Joo Son
    • Journal of Life Science
    • /
    • v.34 no.5
    • /
    • pp.304-312
    • /
    • 2024
  • This study was conducted to characterize strain Y10, isolated from discarded chicken feathers. Strain Y10 was identified as Bacillus amyloliquefaciens through phenotypic and 16S rRNA gene analysis. B. amyloliquefaciens Y10 exhibited plant growth-promoting activities, including the production of fungal cell-degrading enzymes (cellulase, lipase, protease, and pectinase), siderophores, ammonia, and indoleacetic acid. Furthermore, strain Y10 was able to inhibit the mycelial growth of several phytopathogenic fungi. When 0.1% sucrose as a carbon source and 0.05% casein as a nitrogen source were added to the basal medium, adjusted to pH 10, and cultured at 35℃, the degradation rate of chicken feathers by strain Y10 was about two times higher than that of the basal medium, with the feathers almost completely degraded in four days. Strain Y10 also degraded various keratin substrates, including duck feathers, wool, and human nails. It was confirmed that the feather hydrolyzates prepared using strain Y10 exhibited antioxidant activities, such as 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity (EC50 = 0.38 mg/ml) and superoxide dismutase-like activity (EC50 = 183.7 mg/ml). These results suggest that B. amyloliquefaciens Y10 is a potential candidate for the development of bioinoculants and feed additives applicable to the agricultural and livestock industries, as well as the microbiological treatment of keratin waste.