• 제목/요약/키워드: biohydrogen production

검색결과 60건 처리시간 0.026초

광합성을 이용한 바이오수소 생산 (Biohydrogen production using photosynthesis)

  • 심상준;김준표
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 춘계학술대회
    • /
    • pp.478-481
    • /
    • 2006
  • Energy is vital to global prosperity, yet dependence on fossil fuels as our primary energy source contributes to global climate change environmental degradation, and health problems. Hydrogen $(H_2)$ offers tremendous potential as a clean renewable energy currency. Hydrogen has the highest gravimetric energy density of any known fuel and is compatible with electrochemical and combustion processes for energy conversion without producing carbon-based emission that contribute to environmental pollution and climate change. Numerous methodologies have been developed for effective hydrogen production. Among them, the biological hydrogen production has gained attention, because hydrogen can be produced by cellular metabolismunder the presence of water and sunlight. The green alga Chlamydomonas reinhardtii is capable of sustained $H_2$ photoproduction when grown under sulfur deprived condition. Under sulfur deprived conditions, PSII and photosynthetic $O_2$ evolution are inactivated, resulting in shift from aerobic to anaerobic condition in the culture. After anaerobiosis, sulfur deprived algal cells induce a reversible hydrogenase and start to evolve $H_2$ gas in the light. According to above principle, we investigated the effect of induction parameters such as cell age, cell density. light intensity, and sulfate concentration under sulfur deprived condition We also developed continuous hydrogen production system by sulfate re-addition under sulfur deprived condition.

  • PDF

제당폐수를 이용한 수소생산과 미생물의 군집해석 (Biohydrogen Production from Sugar Manufacturing Wastewater and Analysis of Microbial Diversity)

  • 이희수;이태진
    • 유기물자원화
    • /
    • 제20권3호
    • /
    • pp.41-51
    • /
    • 2012
  • 생물학적 혐기발효를 이용하여 제당폐수로부터 바이오 수소가스의 생산 수율을 알아보고, 이 반응에 관여하는 미생물의 군집양상을 살펴보았다. 제당폐수 내 영양염류($N{\cdot}P$)의 공급함에 따라 수소발생량이 9.53 에서 $26.67m{\ell}$ $H_2/g$ COD로 증가하였다. 혐기발효과정에서 butyric acid, acetic acid, lacticacid, 그리고 propionic acid이 검출되었다. Butyric acid/acetic acid(B/A)비는 제당폐수에 영양염류가 공급됨에 따라 0.50에서 0.92로 증가 하였으며, B/A비가 높을수록 수소생산량이 증가하였다. 제당폐수의 발효과정에서 나타나는 미생물 군집은 Firmicutes문에는 Clostridium 속으로 나타났으며 $\gamma$-Proteobacteria 강에는 Klebsiella 속, Erwinia 속, 그리고 Eenterobacter 속이 검출되었다. 또한 수소 생성이 활성화 되면서 Erwinia 속은 위축되고 Klebsiella 속이 많아지는 것을 알 수 있었다.

고농도 산소수 침지를 통한 새싹 재배 (Cultivation of Sprout by Highly Concentrated Oxygen Water Soaking)

  • 차진명;홍승호;김선일;박주영;김맹수;이인화
    • KSBB Journal
    • /
    • 제23권6호
    • /
    • pp.525-528
    • /
    • 2008
  • 고농도 산소수를 이용한 새싹 침지로 인한 발아율 및 성장률을 비교하기 위하여 특정 용존산소량의 산소수를 고압 반응기에서 산소를 통한 가압을 통해 생성하였고, 용존산소량을 20, 30, 40, 50 ppm으로 조절한 산소수로 온도 $20^{\circ}C$에서 새싹을 4시간 동안 침지한 후 새싹을 관찰하였다. 그 결과 새싹의 10일째 최종적인 발아율은 일반 증류수 침지 시에 비해 50 ppm 산소수 침지시 최종발아율은 $24.6{\sim}28.6%$ 높게 나타났고, 최종 성장 길이도 $6{\sim}7\;mm$ 정도 높은 값을 나타내어, 새싹의 성장에서 씨앗의 충분한 산소 공급에 의한 발아가 안정적이고 효율적인 성장을 유도함을 알 수 있었다.

침지조건이 브로콜리 발아에 미치는 영향 (Effect of broccoli sprouts germination by soaking water condition)

  • 박주영;유창훈;이인화;홍승호;차진명
    • KSBB Journal
    • /
    • 제23권6호
    • /
    • pp.551-553
    • /
    • 2008
  • 본 연구에서는 다양한 침지조건에서의 브로콜리 최적 발아조건을 찾기 위한 실험을 수행하였다. 그 결과 4시간동안 $20{\sim}30^{\circ}C$에서 10 ppm 이상의 용존산소를 공급하면서 침지하였을 경우 약 98.5%의 발아율을 보였다. 산소수의 영향을 관찰한 결과 7, 12 ppm에서 각각 76%, 92%의 발아율을 보였으며, 12 ppm 산소수 공급조건에서 7 ppm에 비해 2배 이상의 생장률을 확인할 수 있었다. 결과적으로 브로콜리의 발아율은 재배 시 산소수의 공급보다 침지 시 산소수를 공급할 경우 증가하는 것으로 판단된다.

Experimental Assessment of Mesophilic and Thermophilic Batch Fermentative Biohydrogen Production from Palm Oil Mill Effluent Using Response Surface Methodology

  • Azam Akhbari;Shaliza Ibrahim;Low Chin Wen;Afifi Zainal;Noraziah Muda;Liyana Yahya;Onn Chiu Chuen;Farahin Mohd Jais;Mohamad Suffian bin Mohamad Annuar
    • Korean Chemical Engineering Research
    • /
    • 제61권2호
    • /
    • pp.278-286
    • /
    • 2023
  • The present work evaluated the production of biohydrogen under mesophilic and thermophilic conditions through dark fermentation of palm oil mill effluent (POME) in batch mode using the design of experiment methodology. Response surface methodology (RSM) was applied to investigate the influence of the two significant parameters, POME concentration as substrate (5, 12.5, and 20 g/l), and volumetric substrate to inoculum ratio (1:1, 1:1.5, and 1:2, v/v.%), with inoculum concentration of 14.3 g VSS/l. All the experiments were analyzed at 37 ℃ and 55 ℃ at an incubation time of 24 h. The highest chemical oxygen demand (COD) removal, hydrogen content (H2%), and hydrogen yield (HY) at a substrate concentration of 12.5 g COD/l and S:I ratio of 1:1.5 in mesophilic and thermophilic conditions were obtained (27.3, 24.2%), (57.92, 66.24%), and (6.43, 12.27 ml H2/g CODrem), respectively. The results show that thermophilic temperature in terms of COD removal was more effective for higher COD concentrations than for lower concentrations. Optimum parameters projected by RSM with S:I ratio of 1:1.6 and POME concentration of 14.3 g COD/l showed higher results in both temperatures. It is recognized how RSM and optimization processes can predict and affect the process performance under different operational conditions.

Biohydrogen production from engineered microalgae Chlamydomonas reinhardtii

  • Kose, Ayse;Oncel, Suphi S.
    • Advances in Energy Research
    • /
    • 제2권1호
    • /
    • pp.1-9
    • /
    • 2014
  • The green microalgae Chlamydomonas reinhardtti is well-known specie in the terms of $H_2$ production by photo fermentation and has been studying for a long time. Although the $H_2$ production yield is promising; there are some bottlenecks to enhance the yield and efficiency to focus on a well-designed, sustainable production and also scaling up for further studies. D1 protein of photosystem II (PSII) plays an important role in photosystem damage repair and related to $H_2$ production. Because Chlamydomonas is the model algae and the genetic basis is well-studied; metabolic engineering tools are intended to use for enhanced production. Mutations are focused on D1 protein which aims long-lasting hydrogen production by blocking the PSII repair system thus $O_2$ sensitive hydrogenases catalysis hydrogen production for a longer period of time under anaerobic and sulfur deprived conditions. Chlamydomonas CC124 as control strain and D1 mutant strains(D240, D239-40 and D240-41)are cultured photomixotrophically at $80{\mu}mol\;photons\;m^{-2}s^{-1}$, by two sides. Cells are grown in TAP medium as aerobic stage for culture growth; in logarithmic phase cells are transferred from aerobic to an anaerobic and sulfur deprived TAP- S medium and 12 mg/L initial chlorophyll content for $H_2$ production which is monitored by the water columns and later detected by Gas Chromatography. Total produced hydrogen was $82{\pm}10$, $180{\pm}20$, $196{\pm}20$, $290{\pm}30mL$ for CC124, D240, D239-40, D240-41, respectively. $H_2$ production rates for mutant strains was $1.3{\pm}0.5mL/L.h$ meanwhile CC124 showed 2-3 fold lower rate as $0.57{\pm}0.2mL/L.h$. Hydrogen production period was $5{\pm}2days$ for CC124 and mutants showed a longer production time for $9{\pm}2days$. It is seen from the results that $H_2$ productions for mutant strains have a significant effect in terms of productivity, yield and production time.

Upcycling the Spent Mushroom Substrate of the Grey Oyster Mushroom Pleurotus pulmonarius as a Source of Lignocellulolytic Enzymes for Palm Oil Mill Effluent Hydrolysis

  • Yunan, Nurul Anisa Mat;Shin, Tan Yee;Sabaratnam, Vikineswary
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권6호
    • /
    • pp.823-832
    • /
    • 2021
  • Mushroom cultivation along with the palm oil industry in Malaysia have contributed to large volumes of accumulated lignocellulosic residues that cause serious environmental pollution when these agroresidues are burned. In this study, we illustrated the utilization of lignocellulolytic enzymes from the spent mushroom substrate of Pleurotus pulmonarius for the hydrolysis of palm oil mill effluent (POME). The hydrolysate was used for the production of biohydrogen gas and enzyme assays were carried out to determine the productivities/activities of lignin peroxidase, laccase, xylanase, endoglucanase and β-glucosidase in spent mushroom substrate. Further, the enzyme cocktails were concentrated for the hydrolysis of POME. Central composite design of response surface methodology was performed to examine the effects of enzyme loading, incubation time and pH on the reducing sugar yield. Productivities of the enzymes for xylanase, laccase, endoglucanase, lignin peroxidase and β-glucosidase were 2.3, 4.1, 14.6, 214.1, and 915.4 U g-1, respectively. A maximum of 3.75 g/lof reducing sugar was obtained under optimized conditions of 15 h incubation time with 10% enzyme loading (v/v) at a pH of 4.8, which was consistent with the predicted reducing sugar concentration (3.76 g/l). The biohydrogen cumulative volume (302.78 ml H2.L-1 POME) and 83.52% biohydrogen gas were recorded using batch fermentation which indicated that the enzymes of spent mushroom substrate can be utilized for hydrolysis of POME.

참나무 탄화물을 이용한 질산성질소의 흡착 특성 (Adsorption Characteristics of Nitrate-nitrogen by Carbonaceous Material Prepared from Oak)

  • 김정애;정경훈;최형일;문경도;이호령
    • 한국환경과학회지
    • /
    • 제20권2호
    • /
    • pp.215-222
    • /
    • 2011
  • The adsorption behavior of nitrate nitrogen was investigated from aqueous solution using char prepared from oak chip. The removal rate of nitrate nitrogen was found to be dependent on temperature and it is increased as the temperature increase. Adsorption equilibrium data of nitrate nitrogen on oak char. reasonably fitted Langmuir and Freundlich isotherm models. The adsorption energy obtained from D-R model was 12.5 kJ/mole at $20^{\circ}C$ indicating an ion exchange process as primary adsorption mechanism. Thermodynamic parameters such as ${\Delta}G^o$, ${\Delta}H^o$, and ${\Delta}S^o$ were -23.76 kJ/mole, 26.1 kJ/mole and 89.7 J/K mole at $20^{\circ}C$, respectively, indicated that the nature of nitrate nitrogen adsorption is spontaneous and endothermic.