• 제목/요약/키워드: biofilm resistance

검색결과 80건 처리시간 0.024초

Relationship between biofilm formation and the antimicrobial resistance in the Staphylococcus spp. isolated from animal and air

  • Seo, Yeon-Soo;Lee, Deog Young;Kang, Mi Lan;Lee, Won Jung;Yoo, Han Sang
    • 대한수의학회지
    • /
    • 제49권3호
    • /
    • pp.231-236
    • /
    • 2009
  • Biofilm has been described as a barrier, which produced by microorganisms to survive and protect themselves against various environments, like antibiotic agents. Staphylococcus spp. is a common cause of nosocomial and environmental infection. Thirty-six and thirty-five Staphylococci were isolated from animals and air, respectively. Based on the biofilm forming ability of the bacterium reported in our previous report, relationship between biofilm formation and antibiotic-resistance was investigated in this study. Regarding antibiotics susceptibility, cefazolin was the most effective agent to the bacteria. Strong biofilm-forming Staphylococcus spp. isolates might have a higher antibiotic resistance than weak biofilm isolates regardless of the presence of antibiotic resistance genes (p < 0.05). This result suggested that the chemical complexity of the biofilm might increase the antibiotic resistance due to the decrease of antibiotic diffusion into cells through the extensive matrix.

Mechanisms and Control Strategies of Antibiotic Resistance in Pathological Biofilms

  • Luo, Ying;Yang, Qianqian;Zhang, Dan;Yan, Wei
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권1호
    • /
    • pp.1-7
    • /
    • 2021
  • Bacterial biofilm is a community of bacteria that are embedded and structured in a self-secreted extracellular matrix. An important clinical-related characteristic of bacterial biofilms is that they are much more resistant to antimicrobial agents than the planktonic cells (up to 1,000 times), which is one of the main causes of antibiotic resistance in clinics. Therefore, infections caused by biofilms are notoriously difficult to eradicate, such as lung infection caused by Pseudomonas aeruginosa in cystic fibrosis patients. Understanding the resistance mechanisms of biofilms will provide direct insights into how we overcome such resistance. In this review, we summarize the characteristics of biofilms and chronic infections associated with bacterial biofilms. We examine the current understanding and research progress on the major mechanisms of antibiotic resistance in biofilms, including quorum sensing. We also discuss the potential strategies that may overcome biofilm-related antibiotic resistance, focusing on targeting biofilm EPSs, blocking quorum sensing signaling, and using recombinant phages.

Effect of Cathodic Biofilm on the Performance of Air-Cathode Single Chamber Microbial Fuel Cells

  • Ahmed, Jalal;Kim, Sung-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권10호
    • /
    • pp.3726-3729
    • /
    • 2011
  • Biofilm formation is inevitable in a bioelectrochemical system in which microorganisms act as a sole biocatalyst. Cathodic biofilm (CBF) works as a double-edged sword in the performance of the air-cathode microbial fuel cells (MFCs). Proton and oxygen crossover through the CBF are limited by the robust structure of extracellular polymeric substances, composition of available constituents and environmental condition from which the biofilm is formed. The MFC performance in terms of power, current and coulombic efficiency is influenced by the nature and origin of CBF. Development of CBF from different ecological environment while keeping the same anode inoculums, contributes additional charge transfer resistance to the total internal resistance, with increase in coulombic efficiency at the expense of power reduction. This study demonstrates that MFC operation conditions need to be optimized on the choice of initial inoculum medium that leads to the biofilm formation on the air cathode.

Endodontic biofilms: contemporary and future treatment options

  • Yoo, Yeon-Jee;Perinpanayagam, Hiran;Oh, Soram;Kim, A-Reum;Han, Seung-Hyun;Kum, Kee-Yeon
    • Restorative Dentistry and Endodontics
    • /
    • 제44권1호
    • /
    • pp.7.1-7.10
    • /
    • 2019
  • Apical periodontitis is a biofilm-mediated infection. The biofilm protects bacteria from host defenses and increase their resistance to intracanal disinfecting protocols. Understanding the virulence of these endodontic microbiota within biofilm is essential for the development of novel therapeutic procedures for intracanal disinfection. Both the disruption of biofilms and the killing of their bacteria are necessary to effectively treat apical periodontitis. Accordingly, a review of endodontic biofilm types, antimicrobial resistance mechanisms, and current and future therapeutic procedures for endodontic biofilm is provided.

Development of an Escherichia coli Biofilm Model on Transwell®

  • Kim, Bok Yung;Thyiam, General;Kang, Ji-Eun;Lee, Seung-Hwan;Park, Sang-Hee;Kim, Jung-Sun;Abraham, Marion
    • 대한임상검사과학회지
    • /
    • 제44권3호
    • /
    • pp.112-117
    • /
    • 2012
  • Escherichia coli biofilm, reported to be produced in the human intestine causing a significant health risk, was successfully grown on transwell$^{(R)}$. This biofilm layer was identified by crystal violet staining and prepared for the in vitro E. coli biofilm system which can be used to screen for inhibitors. The biofilm formation did not show a change in transepithelial electrical resistance values. Furthermore, rhodamine 123 staining showed that the dye did not pass through the membrane once biofilm was formed.

  • PDF

Isolation and Characterization of Halophilic Kocuria salsicia Strains from Cheese Brine

  • Youn, Hye-Young;Seo, Kun-Ho
    • 한국축산식품학회지
    • /
    • 제42권2호
    • /
    • pp.252-265
    • /
    • 2022
  • Kocuria salsicia can survive in extreme environments and cause infections, including catheter-related bacteremia, in humans. Here, we investigated and evaluated the characteristics of nine K. salsicia strains (KS1-KS9) isolated from cheese brine from a farmstead cheese-manufacturing plant in Korea from June to December, 2020. Staphylococcus aureus American Type Culture Collection (ATCC) 29213 was used as a positive control in the growth curve analysis and biofilm-formation assays. All K. salsicia isolates showed growth at 15% salt concentration and temperatures of 15℃, 25℃, 30℃, 37℃, and 42℃. KS6 and KS8 showed growth at 5℃, suggesting that they are potential psychrotrophs. In the biofilm-formation analysis via crystal violet staining, KS6 exhibited the highest biofilm-forming ability at various temperatures and media [phosphate buffered saline, nutrient broth (NB), and NB containing 15% sodium chloride]. At 25℃ and 30℃, KS3, KS6, and KS8 showed higher biofilm-forming ability than S. aureus ATCC 29213. The antimicrobial resistance of the isolates was evaluated using the VITEK® 2 system; most isolates were resistant to marbofloxacin and nitrofurantoin (both 9/9, 100%), followed by enrofloxacin (7/9, 77.8%). Five of the nine isolates (5/9, 55.6%) showed multidrug resistance. Our study reports the abilities of K. salsicia to grow in the presence of high salt concentrations and at relatively low temperatures, along with its multidrug resistance and tendency to form biofilms.

대전지역에서 분리된 생물막 형성 Acinetobacter baumannii 임상분리주의 분자유전학적 특성과 항균제 감수성양상 (Molecular Characterization and Antimicrobial Susceptibility of Biofilm-forming Acinetobacter baumannii Clinical Isolates from Daejeon, Korea)

  • 성지연
    • 대한임상검사과학회지
    • /
    • 제50권2호
    • /
    • pp.100-109
    • /
    • 2018
  • 다제내성(multidrug-resistant, MDR) Acinetobacter baumannii 균주의 출현 및 확산이 전 세계적으로 보고되어 왔는데, 이들 대부분은 생물막 형성능력을 가지고 있다. 생물막 형성은 소독 및 건조에 대해 세균이 저항할 수 있도록 해주는 중요한 병독성 인자이다. 본 연구에서는 생물막을 형성하는 A. baumannii 임상 분리주를 대상으로 항균제 내성 기전에 대한 유전적 기초를 조사하였다. 크리스탈 바이올렛 분석법을 통해 생물막 형성능력을 확인한 결과 46균주가 생물막을 형성하는 것으로 나타났다. 이어서 REP-PCR을 수행하여 서로 다른 클론에 속하는 16 균주를 선택한 후 이 균주들을 대상으로 항균제 내성 인자를 검출하였다. 본 연구에서 분리된 9개 non-MDR (0.96) 균주와 7개의 MDR (1.05) 균주의 평균 생물량은 서로 달랐지만, 이 차이는 유의하지 않았다. 대부분의 생물막 형성 MDR 균주는 다양한 항균제 내성인자 ($bla_{OXA-23}$, armA 및 gyrA 및 parC의 돌연변이)를 가지고 있는 것으로 나타났다. 그러나 대부분의 non-MDR 균주는 항균제 내성인자를 포함하지 않는 것으로 나타났다. 우리의 결과는 A. baumannii 균주의 생물막 형성능력이 항균제 감수성과 상관관계가 적음을 시사한다. 또한 MDR A. baumannii 임상 분리주의 출현은 대개 항균제 내성과 관련된 유전자의 돌연변이나 또는 다양한 항균제 내성인자의 획득에 의한 것으로 사료된다.

Biofilm Formation and Antibiotic Resistance in Salmonella Typhimurium Are Affected by Different Ribonucleases

  • Saramago, Margarida;Domingues, Susana;Viegas, Sandra Cristina;Arraiano, Cecilia Maria
    • Journal of Microbiology and Biotechnology
    • /
    • 제24권1호
    • /
    • pp.8-12
    • /
    • 2014
  • Biofilm formation and antibiotic resistance are important determinants for bacterial pathogenicity. Ribonucleases control RNA degradation and there is increasing evidence that they have an important role in virulence mechanisms. In this report, we show that ribonucleases affect susceptibility against ribosome-targeting antibiotics and biofilm formation in Salmonella.

Disruption of Established Bacterial and Fungal Biofilms by a Blend of Enzymes and Botanical Extracts

  • Gitte S. Jensen;Dina Cruickshank;Debby E. Hamilton
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권6호
    • /
    • pp.715-723
    • /
    • 2023
  • Microbial biofilms are resilient, immune-evasive, often antibiotic-resistant health challenges, and increasingly the target for research into novel therapeutic strategies. We evaluated the effects of a nutraceutical enzyme and botanical blend (NEBB) on established biofilm. Five microbial strains with known implications in chronic human illnesses were tested: Candida albicans, Staphylococcus aureus, Staphylococcus simulans (coagulase-negative, penicillin-resistant), Borrelia burgdorferi, and Pseudomonas aeruginosa. The strains were allowed to form biofilm in vitro. Biofilm cultures were treated with NEBB containing enzymes targeted at lipids, proteins, and sugars, also containing the mucolytic compound N-acetyl cysteine, along with antimicrobial extracts from cranberry, berberine, rosemary, and peppermint. The post-treatment biofilm mass was evaluated by crystal-violet staining, and metabolic activity was measured using the MTT assay. Average biofilm mass and metabolic activity for NEBB-treated biofilms were compared to the average of untreated control cultures. Treatment of established biofilm with NEBB resulted in biofilm-disruption, involving significant reductions in biofilm mass and metabolic activity for Candida and both Staphylococcus species. For B. burgdorferi, we observed reduced biofilm mass, but the remaining residual biofilm showed a mild increase in metabolic activity, suggesting a shift from metabolically quiescent, treatment-resistant persister forms of B. burgdorferi to a more active form, potentially more recognizable by the host immune system. For P. aeruginosa, low doses of NEBB significantly reduced biofilm mass and metabolic activity while higher doses of NEBB increased biofilm mass and metabolic activity. The results suggest that targeted nutraceutical support may help disrupt biofilm communities, offering new facets for integrative combinational treatment strategies.

Inhibitory Effect of Pentose on Biofilm Formation by Oral Bacteria

  • Lee, Young-Jong;Baek, Dong-Heon
    • International Journal of Oral Biology
    • /
    • 제35권4호
    • /
    • pp.203-207
    • /
    • 2010
  • A number of bacterial species coexist in oral cavities as a biofilm rather than a planktonic arrangement. By forming an oral biofilm with quorum sensing properties, microorganisms can develop a higher pathogenic potential and stronger resistance to the host immune system and antibiotics. Hence, the inhibition of biofilm formation has become a major research issue for the future prevention and treatment of oral diseases. In this study, we investigated the effects of pentose on biofilm formation and phenotypic changes using wild type oral bacteria obtained from healthy human saliva. D-ribose and D-arabinose were found to inhibit biofilm formation, but have no effects on the growth of each oral bacterium tested. Pentoses may thus be good candidate biofilm inhibitors without growth-inhibition activity and be employed for the future prevention or treatment of oral diseases.