DOI QR코드

DOI QR Code

Disruption of Established Bacterial and Fungal Biofilms by a Blend of Enzymes and Botanical Extracts

  • Gitte S. Jensen (NIS Labs) ;
  • Dina Cruickshank (NIS Labs) ;
  • Debby E. Hamilton (Researched Nutritionals)
  • Received : 2022.12.07
  • Accepted : 2023.03.02
  • Published : 2023.06.28

Abstract

Microbial biofilms are resilient, immune-evasive, often antibiotic-resistant health challenges, and increasingly the target for research into novel therapeutic strategies. We evaluated the effects of a nutraceutical enzyme and botanical blend (NEBB) on established biofilm. Five microbial strains with known implications in chronic human illnesses were tested: Candida albicans, Staphylococcus aureus, Staphylococcus simulans (coagulase-negative, penicillin-resistant), Borrelia burgdorferi, and Pseudomonas aeruginosa. The strains were allowed to form biofilm in vitro. Biofilm cultures were treated with NEBB containing enzymes targeted at lipids, proteins, and sugars, also containing the mucolytic compound N-acetyl cysteine, along with antimicrobial extracts from cranberry, berberine, rosemary, and peppermint. The post-treatment biofilm mass was evaluated by crystal-violet staining, and metabolic activity was measured using the MTT assay. Average biofilm mass and metabolic activity for NEBB-treated biofilms were compared to the average of untreated control cultures. Treatment of established biofilm with NEBB resulted in biofilm-disruption, involving significant reductions in biofilm mass and metabolic activity for Candida and both Staphylococcus species. For B. burgdorferi, we observed reduced biofilm mass, but the remaining residual biofilm showed a mild increase in metabolic activity, suggesting a shift from metabolically quiescent, treatment-resistant persister forms of B. burgdorferi to a more active form, potentially more recognizable by the host immune system. For P. aeruginosa, low doses of NEBB significantly reduced biofilm mass and metabolic activity while higher doses of NEBB increased biofilm mass and metabolic activity. The results suggest that targeted nutraceutical support may help disrupt biofilm communities, offering new facets for integrative combinational treatment strategies.

Keywords

Acknowledgement

The research was conducted at NIS Labs, an independent contract research organization that specializes in natural products research and testing. The study was sponsored by Researched Nutritionals LLC, the manufacturer of the nutraceutical blend tested in the study.

References

  1. Donlan RM. 2002. Biofilms: microbial life on surfaces. Emerg. Infect. Dis. 8: 881-890.  https://doi.org/10.3201/eid0809.020063
  2. Costerton JW, Stewart PS, Greenberg EP. 1999. Bacterial biofilms: a common cause of persistent infections. Science 284: 1318-1322.  https://doi.org/10.1126/science.284.5418.1318
  3. Rossiter SE, Fletcher MH, Wuest WM. 2017. Natural products as platforms to overcome antibiotic resistance. Chem. Rev. 117: 12415-12474.  https://doi.org/10.1021/acs.chemrev.7b00283
  4. Arciola CR, Campoccia D, Montanaro L. 2018 Implant infections: adhesion, biofilm formation and immune evasion. Nat. Rev. Microbiol. 7: 397-409.  https://doi.org/10.1038/s41579-018-0019-y
  5. Jamal M, Ahmad W, Andleeb S, Jalil F, Imran M, Asif NAwaz M, et al. 2018. Bacterial biofilm and associated infections. J. Chin. Med. Assoc. 81: 7-11.  https://doi.org/10.1016/j.jcma.2017.07.012
  6. Hoiby N, Bjarnsholt T, Moser C, Bassi GL, Coenye T, Donelli G, et al. 2014. ESCMID study group for biofilms and consulting external expert werner zimmerli. ESCMID guideline for the diagnosis and treatment of biofilm infections. Clin. Microbiol. Infect. Suppl 1: S1-25. 
  7. Moser C, Jensen PO, Thomsen K, Kolpen M, Rybtke M, Lauland AS, et al. 2021. Immune responses to Pseudomonas aeruginosa biofilm infections. Front. Immunol. 12: 625597.
  8. Motta JP, Wallace JL, Buret AG, Deraison C, Vergnolle N. 2021. Gastrointestinal biofilms in health and disease. Nat. Rev. Gastroenterol. Hepatol. 5: 314-334.  https://doi.org/10.1038/s41575-020-00397-y
  9. Moreau-Marquis S, Stanton BA, O'Toole GA. 2008. Pseudomonas aeruginosa biofilm formation in the cystic fibrosis airway. Pulm. Pharmacol. Ther. 21: 595-599.  https://doi.org/10.1016/j.pupt.2007.12.001
  10. Mirzaei R, Mohammadzadeh R, Alikhani MY, Shokri Moghadam M, Karampoor S, Kazemi S, et al. 2020. The biofilm-associated bacterial infections unrelated to indwelling devices. IUBMB Life 72: 1271-1285.  https://doi.org/10.1002/iub.2266
  11. Tolker-Nielsen T. 2015. Biofilm development. Microbiol. Spectr. 3: MB-0001-2014. 
  12. Wolfaardt GM, Lawrence JR, Robarts RD, Caldwell SJ, Caldwell DE. 1994. Multicellular organization in a degradative biofilm community. Appl. Environ. Microbiol. 60: 434-446.  https://doi.org/10.1128/aem.60.2.434-446.1994
  13. Ciofu O, Tolker-Nielsen T. 2010. Antibiotic Tolerance and Resistance in Biofilms. In Bjarnsholt T, Jensen P, Moser C, Hoiby N (eds.), Biofilm Infections. Springer, New York, NY. 
  14. Davies DG, Parsek MR, Pearson JP, Iglewski BH, Costerton JW, Greenberg EP. 1998. The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science: a focus on anti-biofilm agents and their mechanisms of action. Virulence 9: 522-554. 
  15. Rumbaugh KP, Sauer K. 2020. Biofilm dispersion. Nat. Rev. Microbiol. 18: 571-586.  https://doi.org/10.1038/s41579-020-0385-0
  16. Kaplan JB. Therapeutic potential of biofilm-dispersing enzymes. 2009. Int. J. Artif. Organs. 32: 545-54.  https://doi.org/10.1177/039139880903200903
  17. Roy R, Tiwari M, Donelli G, Tiwari V. 2018. Strategies for combating bacterial biofilms: a focus on anti-biofilm agents and their mechanisms of action. Virulence 9: 522-554.  https://doi.org/10.1080/21505594.2017.1313372
  18. Nobile CJ, Johnson AD. 2015. Candida albicans biofilms and human disease. Annu. Rev. Microbiol. 69: 71-92.  https://doi.org/10.1146/annurev-micro-091014-104330
  19. Gulati M, Nobile CJ. 2016. Candida albicans biofilms: development, regulation, and molecular mechanisms. Microbes Infect. 18: 310-321.  https://doi.org/10.1016/j.micinf.2016.01.002
  20. O'Gara JP. 2007. Ica and beyond: biofilm mechanisms and regulation in Staphylococcus epidermidis and Staphylococcus aureus. FEMS Microbiol. Lett. 270: 179-188.  https://doi.org/10.1111/j.1574-6968.2007.00688.x
  21. Lister JL, Horswill AR. 2014. Staphylococcus aureus biofilms: recent developments in biofilm dispersal. Front. Cell Infect. Microbiol. 4: 178.
  22. Ferraboschi P, Ciceri S, Grisenti P. 2021. Applications of lysozyme, an innate immune defense factor, as an alternative antibiotic. Antibiotics (Basel) 10: 1534. 
  23. Gao X, Guo M, Zhang Z, Shen P, Yang Z, Zhang N. 2017. Baicalin promotes the bacteriostatic activity of lysozyme on S. aureus in mammary glands and neutrophilic granulocytes in mice. Oncotarget. 8: 19894-19901. https://doi.org/10.18632/oncotarget.15193
  24. Tan Y, Ma S, Leonhard M, Moser D, Schneider-Stickler B. 2018. β-1,3-glucanase disrupts biofilm formation and increases antifungal susceptibility of Candida albicans DAY185. Int. J. Biol. Macromol. 108: 942-946.  https://doi.org/10.1016/j.ijbiomac.2017.11.003
  25. Kaur A, Soni SK, Vij S, Rishi P. 2021. Cocktail of carbohydrases from Aspergillus niger: an economical and eco-friendly option for biofilm clearance from biopolymer surfaces. AMB Express 11: 22. 
  26. Yassein AS, Hassan MM, Elamary RB. 2021. Prevalence of lipase producer Aspergillus niger in nuts and anti-biofilm efficacy of its crude lipase against some human pathogenic bacteria. Sci. Rep. 11: 7981. 
  27. Elchinger PH, Delattre C, Faure S, Roy O, Badel S, Bernardi T, et al. 2014. Effect of proteases against biofilms of Staphylococcus aureus and Staphylococcus epidermidis. Lett. Appl. Microbiol. 59: 507-513.  https://doi.org/10.1111/lam.12305
  28. Jadhav SB, Shah N, Rathi A, Rathi V, Rathi A. 2020. Serratiopeptidase: insights into the therapeutic applications. Biotechnol. Rep. 28: e00544. 
  29. Sapi E, Theophilus PAS, Pham TV, Burugu D, Luecke DF. 2016. Effect of RpoN, RpoS and LuxS pathways on the biofilm formation and antibiotic sensitivity of Borrelia burgdorferi. Eur. J. Microbiol. Immunol. 6: 272-286.  https://doi.org/10.1556/1886.2016.00026
  30. Chai Y, Beauregard PB, Vlamakis H, Losick R, Kolter R. 2012. Galactose metabolism plays a crucial role in biofilm formation by Bacillus subtilis. mBio 3: e00184-12. 
  31. Buommino E, Scognamiglio M, Donnarumma G, Fiorentino A, D'Abrosca B. 2014. Recent advances in natural product-based anti-biofilm approaches to control infections. Mini Rev. Med. Chem. 14: 1169-1182.  https://doi.org/10.2174/1389557515666150101095853
  32. Pierce CG, Chaturvedi AK, Lazzell AL, Powell AT, Saville SP, McHardy SF, et al. 2015. A novel small molecule inhibitor of Candida albicans biofilm formation, filamentation and virulence with low potential for the development of resistance. NPJ Biofilms Microbiomes. 1. pii: 15012. Epub 2015 Aug 12. 
  33. Farkash Y, Feldman M, Ginsburg I, Steinberg D, Shalish M. 2018 Green tea polyphenols and padma hepaten inhibit Candida albicans biofilm formation. Evid Based Complement. Alternat. Med. 2018: 1690747. 
  34. Goc A, Niedzwiecki A, Rath M. 2015. In vitro evaluation of antibacterial activity of phytochemicals and micronutrients against Borrelia burgdorferi and Borrelia garinii. J. Appl. Microbiol. 119: 1561-1572.  https://doi.org/10.1111/jam.12970
  35. Feng J, Zhang S, Shi W, Zubcevik N, Miklossy J, Zhang Y. 2017. Selective essential oils from spice or culinary herbs have high activity against stationary phase and biofilm Borrelia burgdorferi. Front. Med. 4: 169. 
  36. Mahdhi A, Leban N, Chakroun I, Bayar S, Mahdouani K, Majdoub H, Kouidhi B. 2018. Use of extracellular polysaccharides, secreted by Lactobacillus plantarum and Bacillus spp., as reducing indole production agents to control biofilm formation and efflux pumps inhibitor in Escherichia coli. Microb. Pathog. 125: 448-453.  https://doi.org/10.1016/j.micpath.2018.10.010
  37. Socarras KM, Theophilus PAS, Torres JP, Gupta K, Sapi E. 2017. Antimicrobial activity of bee venom and melittin against Borrelia burgdorferi. Antibiotics 6: 31. 
  38. Howell AB, Botto H, Combescure C, Blanc-Potard AB, Gausa L, Matsumoto T, et al. 2010. Dosage effect on uropathogenic Escherichia coli anti-adhesion activity in urine following consumption of cranberry powder standardized for proanthocyanidin content: a multicentric randomized double blind study. BMC Infect. Dis. 10: 94. 
  39. Neto CC, Penndorf KA, Feldman M, Meron-Sudai S, Zakay-Rones Z, Steinberg D, et al. 2017. Characterization of non-dialyzable constituents from cranberry juice that inhibit adhesion, co-aggregation and biofilm formation by oral bacteria. Food Funct.8: 1955-1965.  https://doi.org/10.1039/C7FO00109F
  40. Maisuria VB, Yossef Lopwz-de Los Santos, Nathalie Tufenkji, Eric Deziel. 2016. Cranberry-derived proanthocyanidins impair virulence and inhibit quorum sensing of Pseudomonas aeruginosa. Sci. Rep. 6: 30169. 
  41. Xie Y, Liu X, Zhou P. 2020. In vitro antifungal effects of berberine against Candida spp. in planktonic and biofilm conditions. Drug Des. Devel. Ther. 14: 87-101.  https://doi.org/10.2147/DDDT.S230857
  42. Rosato A, Sblano S, Salvagno L, Carocci A, Clodoveo ML, Corbo F, et al. 2020. Anti-biofilm inhibitory synergistic effects of combinations of essential oils and antibiotics. Antibiotics 9: 637. 
  43. Sandasi M, Leonard CM, Viljoen AM. 2010. The in vitro antibiofilm activity of selected culinary herbs and medicinal plants against Listeria monocytogenes. Lett. Appl. Microbiol. 50: 30-35.  https://doi.org/10.1111/j.1472-765X.2009.02747.x
  44. Quah SY, Wu S, Lui JN, Sum CP, Tan KS. 2012. N-acetylcysteine inhibits growth and eradicates biofilm of Enterococcus faecalis. J. Endod. 38: 81-85.  https://doi.org/10.1016/j.joen.2011.10.004
  45. Samaranayake YH, Cheung BP, Parahitiyawa N, Seneviratne CJ, Yau JY, Yeung KW, et al. 2009. Synergistic activity of lysozyme and antifungal agents against Candida albicans biofilms on denture acrylic surfaces. Arch. Oral Biol. 54: 115-126.  https://doi.org/10.1016/j.archoralbio.2008.09.015
  46. Matthes R, Jablonowski L, Holtfreter B, Pink C, Kocher T. 2021. Enzymatic biofilm destabilisation to support mechanical cleansing of inserted dental implant surfaces: an in-vitro pilot study. Odontology 109: 780-791.  https://doi.org/10.1007/s10266-021-00599-z
  47. Longhi C, Scoarughi GL, Poggiali F, Cellini A, Carpentieri A, Seganti L, et al. 2008. Protease treatment affects both invasion ability and biofilm formation in Listeria monocytogenes. Microb. Pathog. 45: 45-52.  https://doi.org/10.1016/j.micpath.2008.01.007
  48. Katsipis G, Pantazaki AA. 2023. Serrapeptase impairs biofilm, wall, and phospho-homeostasis of resistant and susceptible Staphylococcus aureus. Appl. Microbiol. Biotechnol. 107: 1373-1389.  https://doi.org/10.1007/s00253-022-12356-5
  49. Tan Y, Leonhard M, Ma S, Moser D, Schneider-Stickler B. 2017. Dispersal of single and mixed non-albicans Candida species biofilms by β-1,3-glucanase in vitro. Microb. Pathog. 113: 342-347.  https://doi.org/10.1016/j.micpath.2017.10.057
  50. Tan Y, Ma S, Ding T, Ludwig R, Lee J, Xu J. 2022. Enhancing the antibiofilm activity of β-1,3-glucanase-functionalized nanoparticles loaded with amphotericin B against Candida albicans biofilm. Front. Microbiol. 13: 815091. 
  51. Palanichamy E, Repally A, Jha N, Venkatesan A. 2022. Haloalkaline lipase from Bacillus flexus PU2 efficiently inhibits biofilm formation of aquatic pathogen Vibrio parahaemolyticus. Probiotics Antimicrob. Proteins 14: 664-674.  https://doi.org/10.1007/s12602-022-09908-6
  52. Kamali E, Jamali A, Izanloo A, Ardebili A. 2021. In vitro activities of cellulase and ceftazidime, alone and in combination against Pseudomonas aeruginosa biofilms. BMC Microbiol. 21: 347. 
  53. Deng Y, Wang SY. 2022. Sorption of cellulases in biofilm enhances cellulose degradation by Bacillus subtilis. Microorganisms 10: 1505. 
  54. Wang X, Yao X, Zhu Z, Tang T, Dai K, Sadovskaya I, et al. 2009. Effect of berberine on Staphylococcus epidermidis biofilm formation. Int.J. Antimicrob. Agents 34: 60-66.  https://doi.org/10.1016/j.ijantimicag.2008.10.033
  55. Huang X, Zheng M, Yi Y, Patel A, Song Z, Li Y. 2020. Inhibition of berberine hydrochloride on Candida albicans biofilm formation. Biotechnol. Lett. 42: 2263-2269.  https://doi.org/10.1007/s10529-020-02938-6
  56. da Silva AR, de Andrade Neto JB, da Silva CR, Campos Rde S, Costa Silva RA, Freitas DD, et al. 2016. Berberine antifungal activity in fluconazole-resistant pathogenic yeasts: action mechanism evaluated by flow cytometry and biofilm growth inhibition in Candida spp. Antimicrob Agents Chemother. 60: 3551-3557.  https://doi.org/10.1128/AAC.01846-15
  57. de Oliveira JR, de Jesus D, de Oliveira LD. 2017. Rosmarinus officinalis L. (rosemary) extract decreases the biofilms viability of oral health interest. Braz. Dent. Sci. 20: 64-69.  https://doi.org/10.14295/bds.2017.v20i1.1317
  58. Meccatti VM, Oliveira JR, Figueira LW, Lagareiro Netto AA, Zamarioli LS, Marcucci MC, et al. 2021. Rosmarinus officinalis L. (rosemary) extract has antibiofilm effect similar to the antifungal nystatin on Candida samples. An. Acad. Bras. Cienc. 93: e20190366. 
  59. Agarwal V, Lal P, Pruthi V. 2008. Prevention of Candida albicans biofilm by plant oils. Mycopathol. 165: 13-19.  https://doi.org/10.1007/s11046-007-9077-9
  60. Husain FM, Ahmad I, Khan MS, Ahmad E, Tahseen Q, Khan MS, et al. 2015. Sub-MICs of Mentha piperita essential oil and menthol inhibits AHL mediated quorum sensing and biofilm of Gram-negative bacteria. Front. Microbiol. 6: 420. 
  61. Perez-Giraldo C, Rodriguez-Benito A, Moran FJ, Hurtado C, Blanco MT, Gomez-Garcia AC. 1997. Influence of N-acetylcysteine on the formation of biofilm by Staphylococcus epidermidis. J. Antimicrob. Chemother. 39: 643-646.  https://doi.org/10.1093/jac/39.5.643
  62. Kim YG, Lee JH, Park S, Lee J. 2022. The anticancer agent 3,3'-diindolylmethane inhibits multispecies biofilm formation by acne-causing bacteria and Candida albicans. Microbiol. Spectr. 10: e0205621. 
  63. Grossman AB, Burgin DJ, Rice KC. 2021. Quantification of Staphylococcus aureus biofilm formation by crystal violet and confocal microscopy. Methods Mol. Biol. 2341: 69-78. https://doi.org/10.1007/978-1-0716-1550-8_9
  64. Kumar P, Nagarajan A, Uchil PD. 2018. Analysis of cell viability by the MTT assay. Cold Spring Harb. Protoc. 2018. doi. 10.1101/pdb.prot095505. 
  65. Li YY, Li BS, Liu WW, Cai Q, Wang HY, Liu YQ, et al. 2020. Effects of D-arginine on Porphyromonas gingivalis biofilm. J. Oral Sci. 62: 57-61.  https://doi.org/10.2334/josnusd.19-0075
  66. Lee JH, Kim YG, Khadke SK, Yamano A, Watanabe A, Lee J. 2019. Inhibition of biofilm formation by Candida albicans and polymicrobial microorganisms by Nepodin via hyphal-growth suppression. ACS Infect. Dis. 5: 1177-1187.  https://doi.org/10.1021/acsinfecdis.9b00033
  67. Sapi E, Bastian SL, Mpoy CM, Scott S, Rattelle A, Pabbati N, et al. 2012. Characterization of biofilm formation by Borrelia burgdorferi in vitro. PLoS One 7: e48277.
  68. Lewis K. 2010. Persister cells. Ann. Rev. Microbiol. 64: 357-372.  https://doi.org/10.1146/annurev.micro.112408.134306
  69. Suresh MK, Biswas R, Biswas L. 2019. An update on recent developments in the prevention and treatment of Staphylococcus aureus biofilms. Int. J. Med. Microbiol. 309: 1-12. https://doi.org/10.1016/j.ijmm.2018.11.002
  70. Dongari-Bagtzoglou A, Kashleva H, Dwivedi P, Diaz P, Vasilakos J. 2009. Characterization of mucosal Candida albicans biofilms. PLoS One 4: e7967. 
  71. Thi MTT, Wibowo D, Rehm BHA. 2020. Pseudomonas eruginosa biofilms. Int. J. Mol. Sci 21: 8671. 
  72. Roilides E, Simitsopoulou M, Katragkou A, Walsh TJ. 2015. How biofilms evade host defenses. Microbiol. Spectr. 3: doi: 10.1128/microbiolspec.MB-0012-2014.
  73. Feng J, Li T, Yee R, Yuan Y, Bai C, Cai M, et al. 2019. Stationary phase persister/biofilm microcolony of Borrelia burgdorferi causes more severe disease in a mouse model of Lyme arthritis: implications for understanding persistence, Post-treatment Lyme Disease Syndrome (PTLDS), and treatment failure. Discov. Med. 27: 125-138. 
  74. Lochhead RB, Strle K, Arvikar SL, Weis JJ, Steere AC. 2021. Lyme arthritis: linking infection, inflammation and autoimmunity. Nat. Rev. Rheumatol. 17: 449-461. https://doi.org/10.1038/s41584-021-00648-5
  75. Berndtson K. 2013. Review of evidence for immune evasion and persistent infection in lyme disease. Int. J. Gen. Med. 6: 291-306.  https://doi.org/10.2147/IJGM.S44114
  76. Jensen GS, Benson KF. F. 2019. The blood as a diagnostic tool in chronic illness with obscure microbial involvement: a critical review. Int. J. Complement. Alt. Med. 12: 203-212.  https://doi.org/10.15406/ijcam.2019.12.00474
  77. Benson KF, Jensen GS. 2019 Bacteria in blood from fibromyalgia patients include the Aquabacterium genus, producing metabolites with inflammatory properties in vitro. Results from a pilot study. Int. J. Complement. Alt. Med. 12: 232-239.  https://doi.org/10.15406/ijcam.2019.12.00479
  78. Kim YG, Lee JH, Park S, Kim S, Lee J. 2022 Inhibition of polymicrobial biofilm formation by saw palmetto oil, lauric acid and myristic acid. Microb. Biotechnol. 15: 590-602.  https://doi.org/10.1111/1751-7915.13864
  79. Kim YG, Lee JH, Park JG, Lee J. 2020 Inhibition of Candida albicans and Staphylococcus aureus biofilms by centipede oil and linoleic acid. Biofouling 36: 126-137.  https://doi.org/10.1080/08927014.2020.1730333
  80. Peter H, Ylla I, Gudasz C, Romani AM, Sabater S, Tranvik LJ. 2011. Multifunctionality and diversity in bacterial biofilms. PLoS One 6: e23225.